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Why Algorithmic Geometry? 
 
The geometry I learned as a high school student was the result of 2.5 millennia of 
learning and problem solving carried out with writing systems… paper and pencil.   
Since the 1980s, computers and software have made geometry come alive in a 
way that would seem magical to the ancients.   The impact can be seen all around 
us in computer graphics, robotics, computer vision, CAD, GPS…pursuits still 
emerging from infancy. 
 
The effect of computing on geometry has been epochal, essentially redefining a 
new partnership for solving problems.   The human is still on top as the creative 
thinker and actor, but the new assistant brings to the table seemingly 
inexhaustible stamina for crunching numbers, throwing colored dots on a screen, 
or issuing motor-move commands.   This unique partnership of grey matter and 
silicon makes possible the complex machine behavior put forth in today’s 
embedded-geometry products.   Paper and pencil remain essential tools on the 
creative end of this partnership.  
 
The question needs to be asked:  How relevant are traditional, pre-computational 
geometry concepts when doing geometry in software?  Two generations of 
experience yield an expectably nuanced answer.  Points and distances are still 
paramount.  We rely heavily on Pythagoras but use almost no trigonometry.  For 
rotation, we pass over angles in favor of computationally-elegant direction vectors.   
By the end of the chapter on 2D extended lines, you will have gained an 
appreciation for why slope (dy/dx) is poorly suited for representing line tilt, and 
how orientation does the job.  These modern representational concepts work the 
same way in 2D and 3D, and offer ease-of-use in thinking and writing algorithms. 
 
What is totally new and powerful in software geometry is the ability to automate 
problem solving.  That is, once we forge a solution to a problem (e.g., the 
intersection of two lines in 2D), we permanently create a servant who can be 
called on to obediently carry out this work whenever needed, in whatever context.   
We further enjoy the luxury of being allowed to forget how we solved line 
intersection, while using it to solve more complicated problems, such as the 
intersection of two 3D planes.  These dutiful servants are algorithms. 
 
Being able to write algorithms and then take them for granted, we end up 
constructing layer upon layer of increasingly more powerful problem-solving 
agents.   If we do things right, every geometry problem we solve is incarnated as 
an automated problem-solver, plowable back into a continuing spiral of upwardly-
compatible cyberfunctionality. 
 
This ongoing synergy of human problem solving and algorithmic mechanization, 
with immediate feedback on the screen, gives tremendous power to those 
practicing algorithmic geometry.  In this regard, traditional paper and pencil 
geometry has undergone its most sweeping transformation, one highly 
empowering to people of our time.  So, have at it! 
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Chapter  1.   Representing 2D Points as Vectors 
 
Descartes’ system of coordinate geometry serves as the foundation and 
entranceway for algorithmic geometry.   The point p is known by its [ x y ] 
coordinate location, where x and y are real numbers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first step toward automated data handling we make is to treat [ x y ] as one 
object, i.e. we glue the two numeric values together into a single object called a 
vector.   Using vectors roughly halves the mental work of solving problems 
involving points.  Our lowest-level algorithms will explicitly deal with x and y, but 
after these algorithms are in place, we begin to process points and locations using 
operations that work directly on points and locations…we will process vectors.   
Vector operations lead to powerful problem-solving methods. 
 
So commonplace will it become to think in terms of vectors, the exception will be 
to have to handle single, real number variables, which in the context of vector 
math are called scalars.   The x and y values inside the vector are scalars, as are 
distances between points. 
 
 
Computer Graphics:  Working in pure Cartesian coordinates  
 
Interactive graphics is an ideal workspace for learning 2D algorithmic geometry.  
The pixels on the screen are individually addressable, and therefore provide a 
Cartesian playground where [ x  y ] coordinates take on a geometric meaning.  
The computer’s mouse input position is sensed using the same pixel coordinates.  
 
Java display windows use integer-based pixel coordinates that are upside-down.   
We ignore this faux pas, and superimpose a right-side-up, real number Cartesian 
coordinate system onto the pixel space, where: 

y 

x 

p = [ -8.45    6.37 ] 

-8.45 

6.37 


