

Flexing the Power of

Algorithmic
Geometry

An introduction to modern software geometry
theory and problem solving

Pierre Bierre

2

Flexing the Power of Algorithmic Geometry
By Pierre Bierre

Copyright 2009 Spatial Thoughtware. All rights reserved.
Printed in the United States of America.
Published by Spatial Thoughtware, 980 Riesling Dr.,
Pleasanton CA 94566 USA

Educational method Patent Pending per U.S. Patent Application 61/062,660.

The method in Part II Chapter 14 Rotational Inference: Inferring a Rotator from
its Effect is claimed in U.S. Patent Application 60/519,411.

JavaTM and all Java trademarks and logos are trademarks of Oracle, Inc.

EclipseTM is a trademark of the Eclipse Foundation, Inc.

While every precaution has been taken in the preparation of this book, the author
and publisher assume no responsibility for errors and omissions, or for damages
resulting from use of the information contained herein.

ISBN: 978-0-9827526-0-9 08/2010

3

Why Algorithmic Geometry?

The geometry I learned as a high school student was the result of 2.5 millennia of
learning and problem solving carried out with writing systems… paper and pencil.
Since the 1980s, computers and software have made geometry come alive in a
way that would seem magical to the ancients. The impact can be seen all around
us in computer graphics, robotics, computer vision, CAD, GPS…pursuits still
emerging from infancy.

The effect of computing on geometry has been epochal, essentially redefining a
new partnership for solving problems. The human is still on top as the creative
thinker and actor, but the new assistant brings to the table seemingly
inexhaustible stamina for crunching numbers, throwing colored dots on a screen,
or issuing motor-move commands. This unique partnership of grey matter and
silicon makes possible the complex machine behavior put forth in today’s
embedded-geometry products. Paper and pencil remain essential tools on the
creative end of this partnership.

The question needs to be asked: How relevant are traditional, pre-computational
geometry concepts when doing geometry in software? Two generations of
experience yield an expectably nuanced answer. Points and distances are still
paramount. We rely heavily on Pythagoras but use almost no trigonometry. For
rotation, we pass over angles in favor of computationally-elegant direction vectors.
By the end of the chapter on 2D extended lines, you will have gained an
appreciation for why slope (dy/dx) is poorly suited for representing line tilt, and
how orientation does the job. These modern representational concepts work the
same way in 2D and 3D, and offer ease-of-use in thinking and writing algorithms.

What is totally new and powerful in software geometry is the ability to automate
problem solving. That is, once we forge a solution to a problem (e.g., the
intersection of two lines in 2D), we permanently create a servant who can be
called on to obediently carry out this work whenever needed, in whatever context.
We further enjoy the luxury of being allowed to forget how we solved line
intersection, while using it to solve more complicated problems, such as the
intersection of two 3D planes. These dutiful servants are algorithms.

Being able to write algorithms and then take them for granted, we end up
constructing layer upon layer of increasingly more powerful problem-solving
agents. If we do things right, every geometry problem we solve is incarnated as
an automated problem-solver, plowable back into a continuing spiral of upwardly-
compatible cyberfunctionality.

This ongoing synergy of human problem solving and algorithmic mechanization,
with immediate feedback on the screen, gives tremendous power to those
practicing algorithmic geometry. In this regard, traditional paper and pencil
geometry has undergone its most sweeping transformation, one highly
empowering to people of our time. So, have at it!

4

Part I 2D Geometry Page

Chapter 1. Representing 2D Points as Vectors 7

Chapter 2. Object Motion 15

Chapter 3. Circles 19

Chapter 4. Representing Direction with Vectors 21

Chapter 5. Representing Extended 2D Lines 29

Chapter 6. Coordinate Rotation 43

Chapter 7. Adding and Subtracting Angles in DirVec2 Space 49

Chapter 8. Intersection of 2 Lines 52

Chapter 9. Intersection of Line and Circle 60

Chapter 10. Intersection of 2 Circles 64

Chapter 11. Triangulation Methods 70

Chapter 12. (optional) Line Segments and Circular Arcs 75

Exploring 3D Challenges:

Socket Wrench Pick and Place Robot 80

Shoulder-Elbow Robot Arm 83

Analog Clockface Parallel Graphics 86

Location by Triangulation 89

5

Part II 3D Geometry Page

Chapter 1. Axes and Points 96

Chapter 2. Direction Vectors 99

Chapter 3. Planes 103

Chapter 4. Rotators 105

Chapter 5. Lines 109

Chapter 6. Intersection of 2 Planes ➔ Line 114

Chapter 7. Intersection of Line and Plane ➔ Point 119

Chapter 8. Intersection of 3 Planes ➔ Point 122

Chapter 9. Spheres and Circles 123

Chapter 10. Intersection of 2 Spheres ➔ Circle 124

Chapter 11. Intersection of Circle and Sphere ➔ 2 Points 128

Chapter 12. GPS Triangulation: Intersection of 3 Spheres ➔ 2 Points 130

Chapter 13. Directional Triangulation 134

Chapter 14. Rotational Inference: Inferring a Rotator from its Effect 136

Exploring 3D Challenges:

3D Wireframe Graphics 140

Automated Gas Pump Attendant 143

CAD Pipe Outline Graphics 146

Optical Reflection and Refraction 147

Computer Vision 151

Molecular Brownian Rotation 154

Deep Space Navigation 155

6

 Page

Summary Perspective on Algorithmic Geometry 157

Appendix A. Getting Started with Eclipse Java and AlgoGeom2D 161

Appendix B. Answers to Paper and Pencil Problems 162

About the Author 171

 Acknowledgments

The inspiration to modernize 9-12 math education arose from reading
the Hart-Rudman Commissionʼs recommendations circa 2000. To
paraphrase, math and science education have more to offer future
national security than anything the military can provide.

I have been blessed with many great teachers along the way.
Thomas Judd and Bill Rankin brought the fruits of Sputnik-era
science curriculum reforms to Greece Arcadia HS just on time for my
cohort. PSSC Physics helped me decide to go on to Stony Brook for
Theoretical Physics. In college, David Emmerich and Herb Bliden
encouraged my interest in psychophysics. At CS grad school in UC
Boulder, I received first class mentoring from Paul Ziegler, and
learned numerical computing from one of its best, Bobby Schnabel.

Working at Stanford Neuropsychology Lab in the ʻ80s, Karl Pribram
pushed me to to meld ideas in math, computing and brain science
while studying mammalian vision systems.

AlgoGeom.org owes much to Brian Lukoff, who designed a teaching
portal and on-line assessment suite, and shaped the Java language
conventions used. Beth Injasoulian pioneered the way for
professional development as the first credentialed math teacher to
learn AlgoGeom, and Gregory Duran and Stan Hitomi paved the way
for our first public school delivery in 2010 at Dougherty Valley High in
San Ramon CA. Stan worked with Dick Farnsworth and Jim Bono at
Lawrence Livermore Labs to secure initial funding.

7

Chapter 1. Representing 2D Points as Vectors

Descartes’ system of coordinate geometry serves as the foundation and
entranceway for algorithmic geometry. The point p is known by its [x y]
coordinate location, where x and y are real numbers.

The first step toward automated data handling we make is to treat [x y] as one
object, i.e. we glue the two numeric values together into a single object called a
vector. Using vectors roughly halves the mental work of solving problems
involving points. Our lowest-level algorithms will explicitly deal with x and y, but
after these algorithms are in place, we begin to process points and locations using
operations that work directly on points and locations…we will process vectors.
Vector operations lead to powerful problem-solving methods.

So commonplace will it become to think in terms of vectors, the exception will be
to have to handle single, real number variables, which in the context of vector
math are called scalars. The x and y values inside the vector are scalars, as are
distances between points.

Computer Graphics: Working in pure Cartesian coordinates

Interactive graphics is an ideal workspace for learning 2D algorithmic geometry.
The pixels on the screen are individually addressable, and therefore provide a
Cartesian playground where [x y] coordinates take on a geometric meaning.
The computer’s mouse input position is sensed using the same pixel coordinates.

Java display windows use integer-based pixel coordinates that are upside-down.
We ignore this faux pas, and superimpose a right-side-up, real number Cartesian
coordinate system onto the pixel space, where:

y

x

p = [-8.45 6.37]

-8.45

6.37

