Algorithmic Geometry:

2 Year Summary Report on
DVHS Pilot Phase

e g 7 Cire\R
H ’5 < - New Qo
M K O\f\‘ec‘ r_.»)m A 2

3 :
P lane ey Ky o
Q"\\MQJ}KAOJ (::]‘ e H“W’\"‘L(dg @
coes | * M f, e : i i
( 1 H\l\l% A\(Owl' h,\_(’lL ; ﬂlfw'\-' ﬂ'. e\ 5
H\ " :
A, oow )t M0 LM el Myl M.nal H‘u\,/
\-\&\AL dedirs o&‘r owes o e (PRI ot e Same
Ve f\““'“‘,‘*“' m y
o8 R .
5 Ces el | ,ﬁ/
‘—-‘—4{ - \vo'
@ g}@/ | '_'.""" /
N s 7
ry, o b




Algorithmic Geometry: 2 Year Summary Report
Dougherty Valley High School Pilot Phase

We’re on the move

Everyone involved with Algorithmic Geometry math education for high school is advancing
significant Math content modernization. Our BHAG: Can teens learn geometry problem-solving
the way it has evolved in our tech industries, as a seamless integration of math and computer
science disciplines?

The payoff for students is up-to-date, hands-on preparation as inventive problem-solvers, and
the confidence that comes from tackling wicked difficult spatial problems through cleverness
harnessing prodigious amounts of software computation. Learning the ropes used by today’s
math-savvy tech professionals, students gain admission to an insider’s understanding of 21st
century apps such as 3D graphics, computer vision, GPS positioning and robotics. Algorithmic
math is an essential adaptation needed to keep 9-12 math relevant in a digital world.

Keeping college-prep math content current with the STEM professions is a 9-12 leadership
responsibility. Your support and interest in this research project puts you in that vanguard.
It's a messy process, but together, we’re on the move!

Demonstrating the Possibilities

The major project achievements over the past 2 years at Dougherty Valley HS (San Ramon CA)
were:

1) Content development - We mapped the learning sequence in Flexing the Power of
Algorithmic Geometry onto the 145 hour class schedule. A spectrum of PBL challenges were
developed, ranging from 20 minute mini-challenges to a 2 week “software company” class
project. We prototyped flipped mini-lectures delivered over the web. Public speaking was
embedded as a core competency expected of all innovative math thinkers.

2) Assessment development - We prototyped and refined a set of formative online quizzes
that reinforce and stretch the lectures and labs covered in class. For summative assessment,
we developed two semester Final Exams that measure operational problem-solving knowhow
in a novel situation designing & writing software - algorithmic math inventiveness.

3) Student success baseline - For n = 28 students, we have initial results on what student
success with this type of project-based, advanced math-CS learning looks like.

4) Logistics practicum - We obtained a 15t cut answer to the question, “What does it take to
successfully implement such a course in public school?” We have preliminary answers in
regard to professional development, team-teaching model, course pacing, online learning
supports, grading policy, software lab tech support, student recruiting and master scheduling.

copyright Spatial Thoughtware 2012



5) Outreach / Alliance
e Algorithmic Geometry approved as “c” advanced math by UCOP 2010-12
e Lawrence Livermore National Labs contributed funding and ideas
DVHS Academic Booster Club (ABC) donated funds
Press and local cable TV covered the pilot course
Visit by Jerry McNerney, Member of Congress w/ PhD in Mathematics
Parents night open-house attendance was strong both years (~70%)
 Students presented projects both years at the summer Computer Science Teachers
Association CS4HS conference at UC Berkeley (sponsored by Google)

Project-Based-Learning (PBL) Overview

The big conundrum facing math ed is how to keep from turning off students. One prevalent
student complaint is “When am I ever going to use this stuff (except on tests)?” The antidote,
a pillar of the Common Core Math Standards, is to infuse problem-solving with real-world
applications (recontextualizing math).

To fit PBL into this math course, the theory content was already whittled down to minimalist
essentials, just enough to undergird the application challenges. A fundamental advantage of
algorithmic math regarding PBL is the ability of students to incrementally vest their math
knowhow (as it is expanding) in the medium of software. It is difficult to appreciate the time-
efficiencies implied by this workstyle until you have personally experienced the remarkable
mental leverage of having all your past mental problem-solving work stored in the form of
finished, reusable algorithms. Project synergy and efficiency are the result.

Typical project challenges are designed to be solvable with 2-5 hours of effort, broken down in
approximate fourths (new math theory, new sketches, new Java code, new computer graphics).
Though the student may only write 30-50 new lines of code for the project, when this code
runs, it is exercising 90% of the software code and past mental work the student has expended up
to this point in the course.

This pattern of incremental, general-purpose knowledge accretion is the virtuous cycle that
empowers algorithmic math learners to surmount problems too complex for traditional (paper
and pencil) math analysis. The complexity resides in the ~100 hours of problem-solving
effort, crystalized in the student’s library of software algorithms, and its ability to be quickly
repurposed to solve an unexpected new problem. In the student’s estimation of effort, the
complex project takes 2-5 hours to solve -- the 100 hours of previous work it depends upon is
discounted as unrelated problem-solving. Taking for granted their algorithms already solved,
students experience the power of solving a wicked-complex problem with minimal time and
effort. This economy and fluidity of math brainpower is entirely new in the past 30 years
thanks to high-level programming languages. The amplification of mental power that
algorithmic thinking brings is a game changer, and will come to differentiate 21st century math
from that of previous centuries.

Our experience and data collection indicate that students are turned on to their own creative



genius and the relevance of mathematics when thrust into the role of high-tech problem-
solvers!

PBL Example: “Plane Down” (details in Appendix A)

This report would be incomplete without conveying at least one example, start to finish in all its
gory details, of how PBL and algorithmic geometry engage the student’s thirst to conquer real-
world situations.

“Plane Down” takes students back to the overnight disappearance of Air France 447 en route
from Rio de Janeiro = Paris June 1, 2009. Students have to determine where to mount a search
and rescue operation (longitude, latitude), given only the following information available the
night of the incident:

Rio airport [ longitude, latitude ] Scheduled flight duration
Paris airport [ longitude, latitude | Flight duration up to loss of radio contact

The implied task is to calculate the flight path (a great circle arc), then interpolate along it
proportionally based on flight duration. The motivational hook is the sense of urgency in
rescuing people bobbing in the ocean. Problems are chosen to be equally compelling for boys
and girls.

From a Common Core Math perspective, this problem naturally builds in these complicators:
e Geo-locations given in spherical angles (phi, theta)
 Flight path (a tilted 3D circle) benefits from using 3D direction vector geometry
Overlapping coordinate systems: Geo-locations vs. Cartesian coordinates [ Xy Z ]
e Mixed units: degrees, radians, kilometers
Cartesian origin is implied, not specified
Novel math challenge: How to interpolate locations along a tilted 3D circle?

This challenge took 4 class days (3.3 hours). All students (100%) solved it with their own
software code and numerical results, working collaboratively in pairs. Two distinct algorithmic
solutions to 3D circular-arc interpolation emerged. No instructor prompting was given on this
sub-problem, nor was there anything helpful found on the web. See Appendix A for the details
of “Plane Down” and an example student solution.

Summative Assessment - 2 year Final Exam Results

Our assessment philosophy: If students are not able to apply math thinking in a novel situation,
then it’s dubious what has been learned.

Mindful of students’ highly advanced skills in memorization and regurgitation, all AlgoGeom
exam items oblige some degree of novel thinking. All Final Exam questions involve 3D
geometry (1st semester exam covers 2D). The exam is open book, notes and Java source code.
The web is available, but not very helpful.



Observing a 2.0 hour test duration, the exam is structured to probe these 4 areas of proficiency:

Math-fact short-answer (6 items). These measure the student’s ability to reason using vector
math, 3D geometry, and Java coding fundamentals, for example reasoning how the vector dot
product (and cross product) output behaves when the input vectors u and v are perpendicular.

Representational creativity (single 3-part item). During the course, students learn how to
represent these 3D objects parametrically: 3D Point, Line Segment, 3D Direction, Sphere, Plane,
3D Circle, and 3D Extended Line. In this item, students are shown a novel object (a Torus), and
asked to create a parametric representation (set of variables) capable of representing all
possible Tori. This item demands students think like professional mathematicians.

Application Utility (single 2-part item). During the course, students write ~200 algorithms.
A key skill in algorithmic problem-solving is recognizing when an algorithm you’ve already
solved may be used to advantage in a new context. In this item, a futuristic scenario is given
involving two Vertical Cities “people-mover” linear tubes (think ultrafast escalators).

Red

Blue & 3 q
Sector-33

Sector-4 1 . Iranster !
Transfer B

Blue !
Sector-11

Red
Sector-09

As architect, the test-taker has to create the shortest transfer tube (Green Line) linking up the
Red and Blue lines, solving for 3D coordinates of its endpoints and the tube length. The givens
are the coordinates of the 4 end-of-the-line stations.

Only one of the ~ 200 algorithms solves this application, the closest approach Line Segment of 2
skew lines. (In 2D geometry, the analogous problem is intersection of 2 lines = 1 point). In
addition to selecting the right algorithm, the student must write a short amount of Java code to
enter the givens, run the algorithm on them, and output the answers (run a Test Case).

Algorithm Design (single item - inventive sketching, Java coding and running Test Case).

This item will consume between 0:30 and 1:30 of the exam time. This is the only long-response
item. It assesses the paramount skill developed during the course -- creatively solving a novel
math problem algorithmically. The problem given (Prob 9) is:



Challenge: Algorithm Design, Implementation, and Test Case
9. Design an algorithm to solve the following general problem:

Given an extended line L, and a point p, compute the point p, on the line closest to p.

oP

P

a) The Design Data Sheet (sketch) must be completed to receive any credit.
b) Test Case (attempt only after algorithm is designed and coded)

Line L passes through these 2 points: [-35 -67 99] [22 -72 -105 ]
Pointp: [ 13 13 13 ]

pp = [ ]

c) How could you verify that the path from p, to p is orthogonal to line L?

Now run this check. What was the result?




2-Year AlgoGeom 3D Final Exam Results for n=28 students (12 female, 16 male)

Overall Score

1 -
09
08 7
0.7

06 -

05 ~ “ﬁ
04 -

03 ~ u
02 -

0 \ |

[0 T LI B S B B S B B B B B B R B

1234567 8 910111213141516171819202122232425262728
Representational Creativity (Prob 7) 29
H=.

. : R — R

oy - i

. = - - —rmr

5 -

a t

1l i

21| i

S il

1234567 8 910111213141516171819202122232425262728

Short-answer (Probs 1-6)
pn=.83
iy B .
LV ——— | — mw
12 - RN
10 —
2 4
. i
1 I
111
0 - T T
1234567 8 910111213141516171819202122232425262728
Application Utility (Prob 8)
u=.88
s ] — sl
4
2 d
2-:
4

1234567 8910111213141516171819202122232425262728

Algorithmic Design
(Prob 9 computational sol'n)

1234567 8 910111213141516171819202122232425262728

The Algorithm Design (Prob 9) is scored P/F on whether the student was able to solve the test
case numerically (which requires a correct algo to have been designed, implemented and test
case setup). 21 /28 students (75%) were successful at this high level of inventive proficiency
under an exam deadline. Success correlated highly with sketch quality.



Three distinct algorithmic approaches were invented by students, evidence for creative juices
flowing on this complex task. Yet, the scoring is entirely objective - other than sketch quality
(scored manually by the instructors), the algorithm either works to obtain the correct answer
or not. The odds of obtaining the correct numerical result from an incorrect algorithm are
vanishingly small, as are the odds of a correct algorithm absent a sketch outlining it. Students
accept algorithmic testing as an impartial and objective yardstick of success.

Significance of Learning Achievement Results

The Project-Based Learning results are presented alongside the Final Exam results as two
parallel indices of student learning achievement. When doing PBL, task time is elastic and
accomodates to the last problem-solvers (“group master then advance”), so individual speed is
downplayed. PBL draws upon collaborative design (pairs or threesomes) and individual
implementations, rehearsing typical roles in the tech workplace.

The Final Exam is a purely individual performance task of both algorithm design and
implementation inside a rigid timeframe. In order to keep our measurements of problem-
solving ability unadulterated by performance speed, we give students 4X the time it takes the
instructor to take the exam (i.e. items are pared down until the instructor takes <= 0:30 min).
The “Overall” Final Exam score distribution looks unremarkable (mean = 81 / 100), and no
different from any other advanced math course taught at the same school. We take this as
evidence that AlgoGeom content in no harder to learn than other 11-12 grade math courses
(Calculus, Statistics, Discrete Math).

Considering the advanced nature and unrehearsed novelty of the PBL and Final Exam problems,
the project has obtained encouraging preliminary evidence that the Algo Geom course is
effective at imparting a level of spatial problem-solving sophistication well beyond what most
educators would think possible for high school. Our mission is to raise those expectations.

Demonstrating the “quantum leap” in problem-solving complexity offered by interdisciplinary
Math-CS is what we had planned to achieve with these DVHS pilot courses. The starting point
was establishing feasibility of the course content and the learned proficiencies obtained with it.
In this regard, the project has scored a “hit”, and made it to first base.

What Did it Take?

The project learned some things about what it takes to begin offering Algorithmic Geometry in a
public school setting. This discussion is based on 1 data point - DVHS and San Ramon Valley
USD -- it is premature to extrapolate from it. The point of this section is to document the
strategic decisions, course preparation and deployment thinking that went into staging the pilot
courses.

[nitial district pitch / NSF proposal: Three years before launch, the course developer (Spatial
Thoughtware) met with the San Ramon Valley USD Math leadership team (Stan Hitomi, Gregory
Duran et al.) to explore options for Algorithmic Geometry. One year later, a NSF grant proposal



(DRK12) was jointly submitted which was not awarded. The following year, a U.S. Dept. of
Education (Math and Science) proposal was jointly submitted.

DoEd proposal / School Board Approval: While the U.S. DoEd grant was being reviewed, the
District decided to launch Fall 2010 regardless of the grant decision. Board approval came 6
months prior to launch. Lawrence Livermore Labs funding was arranged.

Professional Development tutoring: Two credentialed 9-12 Math teachers were trained as
AlgoGeom problem-solvers in 1:1 tutoring workshops (both beginners at Java programming,
but familiar with vector math theory). This workshop ran 7 months leading up to the course
launch, a mixture of p2p tutoring and remote GoToMeeting sessions. The number of hours was
approximately 80 h /per teacher. Beth Injasoulian (15t teacher trained), our Professional
Development expert, made substantial contributions to the 3D AlgoGeom semester module,
though she has yet to teach a class. Gregory Duran, the 274 teacher trained, co-instructed the
DVHS course 2010-2012, and contributed extensively toward courseware refinement.

UCOP Approval: During the 2010-11 school year, DVHS applied to UC Office of the President to
obtain a-g vetting as a “c” Advanced Mathematics course (countable towards the UC/CSU
admission requirements). It took 3 submissions before being approved in March 2011.

Paired-instructor model: We adopted a team-teaching model, pairing an AlgoGeom-trained,
credentialed, teacher-of-record (Duran) with the course developer (Bierre), a computer
scientist bringing AlgoGeom and career Java expertise. The lecture load was split, as was the
lab mentoring. Some online mini-lectures were created (Duran).

Online portal with formative quizzes: A course online portal was created (Lukoff). Chapter
quizzes, all administered and scored online were provided as a way for instructors to monitor
individual progress while boosting student confidence. Unlimited quiz retaking was allowed
up until a deadline, and quizzes counted minimally toward the grade, in order minimize quiz
anxiety. 22 / 28 students worked to complete all quizzes 100% correct. Students could also
pull down lecture Powerpoints, lab Java code snippets, and project files. The portal became
important as a dependable way to share code.

iMac Lab: The Java can be done on Mac or Windows. We opted for an iMac lab, where each
student had a dedicated computer. Students used Eclipse / Java / Java3D (mainstream
professional tools) as the development platform, along with browsers and PowerPoint. A
large-screen projector coupled to the teacher’s rig, a doc-cam, and whiteboard were used as a
shared workspace. Each student kept a lab notebook of sketches (paper or web-based).

Textbook: Flexing the Power of Algorithmic Geometry (Bierre) served as the textbook (syllabus
plan). The school district purchased books bundled with AlgoGeom software seats and teacher
training. The book was not used in class, but helped students who missed class.

Group-master-then-advance. Syllabus pacing was flexible with the entire group reaching
mastery before moving forward. Extensive reuse of previous algorithms dictates that the class
stay together in formation while ascending the learning curve. Absenteeism was light, and was



dealt with by borrowing code from a student peer. The psychological impact of group-master-
then-advance is learner safety - students know they are not going to be allowed to fall behind.
To prevent boredom on the part of the fast learners, stretch problems were made for most labs.

Grading policy. 70% lab completions, 10% final exams, 10% online quizzes, 10% class
participation and public speaking. Homework was rare, respecting the need to have tech
support 100% present during early Java programming learning. Our strategy was to avoid a
high-stakes exam situation; AlgoGeom was positioned as an advanced math course taken for
enjoyment and intellectual growth.

Semester Final Exams. Exam designs were a team effort, under the close supervision of our
Assessment expert (Lukoff). A master list of proficiency goals drove test item design. QA for
exams consisted of instructor administrations, allowing a 25% time-target.

Software lab tech support. AlgoGeom students spend >50% class time developing software.
The computer lab is a critical daily asset, and needs tech support staffing. In addition, course
instructors (and TAs / Automated Mentor in the future) need sufficient understanding of the
labs and Java programming to rescue any student who has become stranded.

Student recruiting. As an elective not eligible for grade inflation, AlgoGeom had to compete for
signups unfairly against AP and Honors PreCalculus courses that inflate GPA. This was a major
impediment to fulfilling a 25-signup school requirement. Counseling told us we could fill 2
sections if it were an Honors course. UCOP limits each subject area to only 1 Honors course.
This policy works against expansion of rigorous course opportunities.

Master scheduling. AlgoGeom is a 2-semester course (or 3 trimester). Because programming
labs are hard to finish at the bell, the best schedule slots are periods that precede brunch or
lunch. The advantage of the paired-instructor model is that the Java expert can remain after
class debugging student programs where needed. A note is simply typed into the student’s
source code giving mentoring on the root cause of the problem. This system of debug support
can likely be done remotely in the future.

Financial support. The school had to raise funds to offset the partially filled class sizes. We
thank Lawrence Livermore National Labs for a $10K, and the DVHS Academic Booster Club for
$8K. The lab equipment and textbooks were covered out of existing budgets. The Eclipse and
Java software developer tools are open-source (free). The course developer (Spatial
Thoughtware) charged ~ $110 per student for textbook and courseware.

Teacher, Parent and Administration support. DVHS was an ideal site for piloting AlgoGeom,
due to many factors: The school educates the children of a Silicon Valley tech workforce; 2 key
district decisionmakers (Gregory Duran, Stan Hitomi) are tech industry veterans. We had
support for doing this course from the School Board and Superintendant, Principal, Math
Department and IT staff. We held two events for parents, and found them extremely
supportive of Math education laced with Computer Science. We received favorable attention
from the press and our Congressman, Jerry McNerney, a PhD in Mathematics.

10



2012 NSF Computing Education proposal. We jointly proposed to this new program at NSF,
presenting one year of public school pilot experience with a plan to grow out 2 new schools.
All the 2012 funds ended up going to establishing core Computer Science education programs.
Interdisciplinary CS courses were invited in the RFP, but were deprioritized after an
unexpected program budget cut of 50%.

Now for the hard question: What will it take to expand access to Algorithmic Geometry
education? In the public school sector, the major obstacles to scale up are filling full
classrooms, and developing teachers. Math content modernization could be ushered in under
Common Core (although the CC Math Standards somehow failed to embrace the major trend
reshaping academic and industry math practice: software programming).

While teaching the pilots, we constantly asked the question: “What are we doing in the
classroom that could not be done in a web-based AlgoGeom course?” With two years under our
belt, the answers are clear: The social and motivational aspect, what Vygotsky calls social
induction, works best in a p2p setting. We don'’t see a practical way to teach sketching over the
web using a software tutor. (Joe LaViola’s work in pen-based tutoring might be relevant in the
future). The debugging of student labs (keeping the beginner programmers moving forward)
also calls for expert human interaction and judgment. At this point, skilled human teachers
(Math/CS) seem an indispensible ingredient of the learning results.

The good news is that we surmounted the earliest professional development challenge, getting
a couple of Math teachers operational with the AlgoGeom/Java problem-solving methodology.
Granted, both were highly motivated, seasoned, expert Math teachers, with tech industry
experience. This pedigree defines the ecology for expansion of Algorithmic Geometry
education - there is no suggestion than every 9-12 Math teacher could be trained. We would
only need to impact about 5% of 9-12 Math-CS teachers. This could develop ~100K students
per year, enough to have a broad impact on the future inventive workforce.

Finally, the process for getting laboratory Math-CS started in a public school is complex and
time-consuming. There isn’t any roadmap or process, nor is this topic on anyone’s Master Plan.
The federal grant programs are not structured to support interdisciplinary Math-Computer
Science. The 2-year DVHS AlgoGeom pilot owes its existence to bottom-up leadership - a half-
dozen key individuals saw it as their responsibilty to begin reforming public education to more
effectively prepare young people for the software tech economy they are inheriting.

And, another dozen advancers supported AlgoGeom at key junctures to make it happen (see
Appendix B: Project Contributors and Advancers).

The hiatus in teaching after 2 years is a good opportunity to stop and reflect, gather our wits
and plan the next move. In some fashion, the project’s fate lies in the hands of people with
access to funds, and institutional power, who are as passionate about reinventing Math
Education as all of you are!

Pierre Bierre, Project Director, AlgoGeom.org
August 2012

11



Appendix A: “Plane Down” example of Project Based Learning

Problem definition handout:

Air France flight 447: Rio de Janeiro — Paris

OnJune 1 2009, Air France 447 crashed in the Atlantic Ocean during a storm.
The flight was scheduled to take 11.1167 hr.

However, radio contact was lost 4.1833 hr into the flight.

Assume the plane flew at normal speed right up until radio silence. Your job is to
pinpoint

[ longitude, latitude ] _

Rio de Janeiro  -43.24361  -22.80888
for the search and rescue mission. Paris 2.54777 49.00972

12



Student sketch outlining solution steps:

Plane Down Regscue : Rio de Taneiro~ Pario
F\iah* time & 1L16F hours city Jensitude | lstitude
Racdlic confacd tost } 41823 houts Qio de Janeiro [-43,243061 [ -22.20888

Paris 254333 [49.009%2

Great Cictle

¢t Janeirp

di*da = cos ( fers) Angle)

cos (dl=d2)= 4otal Angle

d
5in6*

d*éner

The sketching phase is the inductive, creative workspace where the solution first emerges.
Quality sketching is an inventor-level skill that must be developed to be successful in
Algorithmic Geometry. This is because the problem-solution will only “jump out” from the
sketch when sufficient visual cues are present in it to gang up on, and fire the neurons in the
brain representing the solution....the “aha” moment.



Student Java source code:

S/ ook k. o3 nErancedd47PlaneDown %%k kokokokokokokokokokokokorokokokokokok

private void airFranced447PlaneDown() {

DirVec3 dRio = new DirVec3 (radians0f(-43.24361), radians0f(-22.80888));
DirVec3 dParis = new DirVec3 (radiansOf (2.54777), radians0f(49.00972));

Vec3 pRio = dRio.scalarMult(20.0/Math.PI); //1:1000 scale model earth radius = 40000km / 2pi
Vec3 pParis = dParis.scalarMult(20.0/Math.PI);

Sphere earth = new Sphere (new Vec3(9,0,0), (20.9/Math.PI -0.02));

Sphere Rio = new Sphere (pRio, 9.5);
contentModel .addToModel(Rio.renderable(), new Color(255,255,0));

Sphere Paris = new Sphere (pParis, 0.5);
contentModel .addToModel(Paris.renderable(), new Color(255,100,0));

Circle3D greatCirRoute = new Circle3D (new Vec3(9,0,0), DirVec3.crossProd(dRio, dParis), 20.0/Math.PI);
contentModel.addToModel(greatCirRoute.renderable(), new Color (255,0,0));

double cosAngle = DirVec3.cosineOfEnclosedAngle(dRio, dParis);// arc of planned flight

double thetaRadiansRioParis = Math.acos(cosAngle);

double thetaRadiansRioCrash = 4.1833 * thetaRadiansRioParis / 11.1167; // arc of partial flight
System.out.println(thetaRadiansRioCrash);

double distCrashd44?7 - 2 * greatCirRoute.r * Math.sin(thetaRadiansRioCrash / 2);
Sphere crashBubble44? - new Sphere(pRio, distCrashd447);

contentModel .addToModel(crashBubble44?7.renderable(), new Color (80,150,80));
TwoPoints3D intPts = Sphere.intersection0f(greatCirRoute, crashBubbled47?);
//1st solution point is crash location; plot, then convert to [long. lat ]
Sphere crashSite = new Sphere(intPts.pl, 0.1);
contentModel.addToModel(crashSite.renderable(), new Color (255,255,255));
DirVec3 d_intl = new DirVec3 (intPts.pl);

Vec2 crashSitelrad = d_intl.toAngles();

Vec2 crashSiteldeg = new Vec2 (-360.0+degreesOf(crashSitelrad.x), degreesOf(crashSitelrad.y));
crashSiteldeg.print();

This source code both generates a 3D graphics model of the problem & solution, and calculates
numbers [longitude, latitude | for the search and rescue location.

Note the data types (DirVec3, Vec3, Sphere, Circle3D, TwoPoints3D) used to define the high-
level variables of the problem. These data types were developed by every student earlier in the

course, and are usable across a wide swath of 3D problems.

The graphics generated are shown on the next page.

14



Student 3D graphics of the problem and solution (annotations added):

Air France 447 -- Where did it go down?

< crash location = intersection of

and

The creative solution to the problem can be seen in the student’s 3D graphic model.

First, 3D locations [x y z] are determined for the Rio and Paris airports (the dot for Rio is
inside the Crash Sphere at its center) . Next, the Great Circle route is constructed, passing
through the two airport locations, and centered at the Earth center.

How far is the crash from Rio in km (straight line 3D distance)? The student solves this
problem in the sketch using the trigonometry of chords and arcs. Knowing this distance allows
the student to “bubble out” from Rio, i.e. construct a sphere with this precise crash distance as
its radius....the crash location must fall somewhere on this green Crash Sphere.

The crash location is where this Crash Sphere intersects the Great Circle route flown by AF447.
How did this solution occur to the student? It has a lot to do with the student knowing all their

tools - in this case, intersection of sphere and 3D circle had been solved about 1 month prior to
the “Plane Down” assignment. The computed crash site [longitude, latitude] result:

[ -29.021125909848536 4.9882188783061245 ]

15



What are the take-homes from this example of PBL? This is just a starting list of the most
important ones:

Ownership of Learning. The instructors give out the challenge, and then get out of the way.
The kids come in and immediately settle down on-task every day. Though it will take
longitudinal tracking of student outcomes to measure it, we believe math education will emerge
stickier as teachers shift more learning responsibility to students via PBL.

Nurturing invention. Where do new technical breakthroughs come from? How can we
develop inventive originality and confidence? With so much pedantry on the www a few clicks
away, it is actually becoming harder to instill the patience, focus and self-confidence needed to
craft inventions from first principles. The temptation to “Google it” can be overwhelming.
Many students starting AlgoGeom bring a negative orientation toward sketching, which has to
be turned around before the student can function as an inventive geometry problem-solver.
The computer is such a powerful distractor, we moved some of the theory-sketching activities
out of computer lab. On the final exam, we give a design problem that assesses inventive
algorithmic problem-solving.

Advanced 3D geometry. The problems we tackle in the course are college-level, some pushing
the advanced degree envelope. What is striking are the dozens of such problems our students
vanquish in a 145 hour course. What explains this productivity? The AlgoGeom course
cohesion comes from the fact that software-implemented vector math provides a common
foundation for all the spatial applications that are transforming our world. Students who can
write a vector geometry library in software and use it effectively in graphics space, by
definition, are prepared for advanced problem-solving in a myriad of scientific and engineering
domains. The generality of Algorithmic Geometry qualifies it as a prototype for a future
standard Advanced Math course. If we want this knowhow disseminated broadly, it must be
introduced in high school...college is too late to have a broad impact.

Making math come alive. Selling math to young people can be easy or hard. Presenting it as
abstract, decontextualized, and chock full of dense notation is the hard way. The essential
insight for math course developers is that human understanding proceeds from the concrete to
the abstract. Algorithmic Geometry exploits operant (hands-on) learning of vector math, using
student-written 2D computer graphics to visually experience the effects of vector addition,
scalar multiplication and normalization. The use of graphic simulation (2D and 3D) under
student programmatic control is the ideal medium for learning spatial mathematics and its
applications. The abstractions develop naturally as patterns in problem-solving beg to be given
names and shorthand notations. This student-centric rollout of knowledge works toward
eliminating math anxiety. And, when the student’s graphics come alive on the screen, the math
theory driving them instantly gains credibility and relevance.

Collaboration & communication. When students work in small groups, the chatter is on-task as

students verbalize their nascent understanding of geometric programming. Rehearsing and
delivering stand-up presentations, students show dramatic improvement.

16



Appendix B Project Contributors and Advancers

AlgoGeom.org (Spatial Thoughtware)

Pierre Bierre, Project Director, Algorithmic Geometry content creator, software developer,
2010-2012 DVHS course co-instructor, AlgoGeom website developer

Gregory Duran, Math Education Lead, DVHS / SRVUSD partner lead,
2010-2012 DVHS course co-instructor

Brian Lukoff, Chief Education Scientist, Assessment Lead, online portal developer

Beth Injasoulian, Professional Development Lead, AlgoGeom3D tester

Cliff Braun Cal Poly student, educational robot arm co-developer

San Ramon Valley Unified School District
Stan Hitomi, District Math-Science Coordinator
Christine Williams, Assistant Superintendant
Rob Stockberger, Director, Secondary Education
Toni Taylor, Director, Categorical Programs
Marie Morgan, Director, Instruction and Staff Development
Terry Koehne, Director, Community Relations
Sean Davis, IT Computer Lab Technician
Dr. Steve Enoch, Superintendant (retired)

Dougherty Valley High School
Gregory Duran, founding Math Department Coordinator
Denise Hibbard, founding Principal 2006-11
Dr. Jason Reimann, Principal, 2011-
Jessica Coulsen, UCOP “a-g” Representative
Nancy Walters, IT Coordinator
Academic Boosters Club, Anupam Rastogi, 2010-11 chair

Lawrence Livermore National Laboratory
Richard Farnsworth, Director, Teller Education Center
James Bono, Director, Public Affairs

U.S. Congressional District CA-11
Hon. Jerry McNerney, House of Representatives
Nicole Alioto, District Manager

Computer Science Teachers Association
Chris Stephenson, CSTA National Executive Director
Dan Garcia, UC Berkeley EECS
Eugene Lemon, CSTA Golden Gate Chapter Pres.

US Govt. Grant Program Directors
Dr. Christina Chhin, U.S. Dept. of Education, NCER Mathematics and Science
Dr. Jan Cuny, National Science Foundation, Computing Education in the 21st Century
Dr. Spud Bradley, National Science Foundation, Discovery Reseach K-12

[ Cover art: A study guide mural created by the 2010-11 AlgoGeom students ]

17



Gt YONT s
_j | = (A yopem) b Y, 2
wise [Ld T
n‘-"d oves, JAX1S = : 507 O(;
{ « 9t Lol 71 (v Jaxee

’e"/ \ 2 K1) = [J 0 \] Q\M '~ 5fhcf¢.

| ((J con(eMy i “lne
w-a«m%éf R e 7))

o & mk_rsed-wo

OQ» cirtle ond

';r- .‘ C=((a L;Q g :l
chh = Ywb.2) ((znby)

fe SR
”ﬁotuoe’f?oo :w){

)
Cie) } (‘d"hs

g OO .\“"” Qxfb 3 4
X#bY) (ovani “:S‘a (( )( th )(021



