
1

	
	

	

	
	
	

	

	

	

2

Abstract

Math educators and policymakers face an epochal decision – whether the advanced math
skills that undergird high tech society will be passed along to the few, or to the many.
The answer is a harbinger of our nation’s future economic wellbeing and global security.

Geometric problem solving has undergone a quiet revolution over the past generation, in
the hands of people who solve spatial problems by writing software. The new geometry
is algorithmic. The theory foundation has morphed significantly for ease in thinking and
writing algorithms. This paradigm shift is poised to impact 9-12 math education, with
the piloting of algorithmic geometry courseware designed for 11-12 graders. Students
learn explicitly how to represent geometric objects and properties in software. Each
student writes their own geometry software library in Java, operationalizing and
automating their problem-solving knowledge as they acquire it. Problem challenges are
explored in STEM topics ranging from robotics to GPS to molecular mechanics.

Angles and slope are passed over as computationally inferior, supplanted by the more
elegant direction vector (a unit vector representing spatial direction). As a consequence
of sidestepping angle, trigonometry is receding in importance. Coordinate rotations are
specified in terms of a new set of axes (called a rotator). In 3D, direction vectors and
rotators alleviate the confusion associated with polar angles and roll-pitch-yaw angle
combinations. These aren’t mere preferences – direction-vector-based representations
are arguably superior both mentally and computationally to angular representations. This
white paper explains why 21st century students deserve to be taught this new approach.

Algorithmic geometry also introduces math students to the power of problem-solving
automation. They learn the discipline of thinking through fully-generalized
representations and problem solutions (ones able to handle all cases). The payoff is that
previous solutions may be reused in any context, opening the door to layered problem
solving. Layering and reuse make it possible during a 145-hour course for students to
ascend to 3D challenges in robot arm motor coordination, wireframe graphics, GPS
positioning, molecular mechanics, optics, computer vision, and interstellar navigation.

A two-year public school pilot (n=28 students) was undertaken in 2010-12. The results
of these courses are presented. Examples of instructional materials are given.
Preliminary answers are offered on how many students can learn to do geometry this
way, what level of teaching resources are required, and how best to teach teachers.
Pending grant support, development opportunities are expected to surface in the next few
years. The purpose of this white paper is to introduce 9-12 math-CS educators to the
basics of the algorithmic geometry approach, and begin building an alliance of
participating high schools.

 Geometry as a Human-Machine Partnership

What is Algorithmic Geometry? Where does it come from? Why is it emerging now?
How does it differ from analytic geometry? How does it fit into existing curricula?

3

The starting point is the assumption that basic geometry constructs be well suited to
thinking and writing software algorithms. This is a very recent concept, one bound to
reshape the set of thinking tools considered central to solving spatial problems.

Our rich geometric heritage, developed and handed down over millennia, builds in the
unquestioned assumption of human computation. With the advent of software
technology, a more powerful set of geometric thinking tools becomes possible.

The driving question is: How relevant are traditional, pre-computational geometry
concepts when doing geometry in partnership with software? This question boils down
to how nimbly representations originally optimized for brains translate over into
software. With two generations of experience, answers are coming into focus. These
answers are nuanced.

Points and distances translate easily into software. Accordingly, in our first lab, the
student implements 2D Cartesian point vectors and Pythagoras’ distance formula.

At ease with these familiar concepts, the student learns how to implement them in Java.
Though language details take some explaining, the overall gist is fairly intuitive, and
students can absorb much through mimicry.

To represent a Cartesian 2D point as a vector quantity, first, a template for objects of this
class is created, saying what information is needed to represent any 2D vector:

public class Vec2 {
 double x;
 double y;
}

Double precision real variables will house the x and y values (accurate to 16 decimal
digits). The distance unit 1.0 represents one pixel width on the screen.

Then, students create and name instances of 2D points, and call a built-in function to
draw them on the screen:

 Vec2 p1 = new Vec2(100, 200); // inits p1 to [100, 200]
 p1.draw(); // draws point on screen

Near the end of the first lab session, students will have absorbed enough rudimentary
Java to write their own Pythagorean distance function:

public static double distance (Vec2 p1, Vec2 p2) {
 double dx = p2.x – p1.x;
 double dy = p2.y – p1.y;
 double dist = Math.sqrt(dx*dx + dy*dy);

 return dist;
 }

4

Java is well suited to programming mouse-interactive 2D graphics, and there is probably
no more engaging, rigorous and fun way to learn 2D algorithmic geometry. Half an hour
into the course, the student is putting dots on the screen, and learning how to make them
mouse-editable. This progresses quickly to mouse-editable line segments, leading up to
the problem of programming a mouse-draggable triangle.

The challenge given is to move the triangle to a new location by clicking and dragging
near its center of gravity. That is, to write a program supporting this GUI behavior.

Making the Departure from Angle

After points and distance, the third most basic concept in geometry is direction. In
classical plane geometry, angle and slope serve this purpose. Neither angle nor slope is
ideally suited to computation. The ancients can hardly be faulted for this oversight.

Computers do not “think” the same way as we humans. Back in the ‘80s, I was a
software engineer at Stanford Univ. Neuropsychology Lab, studying feline vision. One
day it dawned to me that, as a consequence of representing edge orientation with angle θ,
I was having to write exception code. In the computer, θ is just a number, and the first
letdown is that > 6.2834, the edge directions represented begin to repeat over again.

The computer does not handle ambiguity skillfully as we do. It’s preferable to have a
1:1 relationship between the representation and the thing it stands for. As a band-aid for
θ, we can insist that directions be represented within the bounded range:

 0 ≤ θ < 2π

After every addition and subtraction of angles, the result value has to be inspected and, if
necessary, brought back into standard range. But another problem is looming....

The elegance of using vector addition to
translate the vertices becomes apparent
(blue arrows). Calling upon a method
they’ve written that adds two vectors,

 Vec2 c = Vec2.add(a,b);

the student is thenceforth freed up from
having to deal with the minutia of scalars
x and y. She is able to think of a point as
a unitary object, and operate on it as
such. She processes points and object
motion using vector operations.

y

x

p1

p2
p3

5

we are forced to swallow a discontinuity at 2π. This will complicate deciding when two
directions are almost equal. We cannot merely subtract their values.

Software writing is better off when spatial direction can be represented with the property
of continuity....i.e., nearby directions can always be assumed to have nearby values.

After Stanford, it took me another 15 years to clearly articulate the problem with using
angle computationally to represent direction:

The solution is to use two numbers.....to use direction vectors instead of angles.

Any direction in 2D space can be represented as a vector of length = 1, where the tail is at
the origin and the head falls on the unit circle. Here are examples of two direction
vectors.

Direction vectors are an ideal choice computationally for three reasons:

1:1 Representation: Each possible direction has one and only one direction vector.

Continuity: The value of direction vectors change very smoothly going around the unit
circle…there are no discontinuities anywhere.

There is not quite enough information capacity in a single scalar number to
smoothly and unambiguously represent pointing direction in 2D space.

y

x

unit
circle

d1

d2

[1 1]

[-1 -1]

[.707 .707]

[.894 -.447]

Direction vectors (used in place of angles)

6

Scalability: When we get to 3D, the same concept can be applied – instead of a unit
circle, 3D direction vectors will fall on the unit sphere.

These representational properties streamline the thought process when creating
algorithms. Direction vectors give us a means of representing spatial direction free of
messy exceptions. Once you get used to working with direction vectors, the mental
process becomes similarly streamlined. Algorithmic geometry is multimedia, straddling
the brain, paper and pencil drawing, writing source code, and the computer running it
producing graphic results. Compatibility across all four media is the major consideration
shaping the theory and methodology.

Direction vectors are too hard to calculate in your head (even with the help of paper and
pencil). This explains why they receive perfunctory mention in high school texts (if at
all). For instance, the direction from point p1 to p2 is:

 dp1p2 = (p2 – p1)norm = [(p2.x-p1.x)/ dist(p1, p2) (p2.y-p1.y) / dist(p1, p2)]

Angles are much better suited to brain computation. But direction vectors are superior
when the computer is crunching the numbers. They are a nimble fix to the
overcompression of information in angle, and require no more effort than to once and for
all write source code to compute the direction from p1 to p2:

public DirVec DirVecOf(Vec2 p1, Vec2 p2) {//p1 p2
 if (identical(p1, p2)) return null;
 return new DirVec(normalize(diff(p2, p1)));

Don’t expect the elegance of this approach to jump out of the page and seduce you on the
spot. It takes some experience applying direction vectors algorithmically before your
allegiance to angle softens up. Where we want to help you get to (and your US students)
is a new level of representational sophistication where angles and direction vectors
coexist along a human-machine continuum, each playing to their strengths, and avoiding
their respective limitations. A student straddles this continuum by writing conversion
functions for going back and forth between θ radians and direction vector d = [x y].

Reinventing the 2D line equation

The next problem the student is confronted with is referred to in computer graphics as
line hit testing -- Write an algorithm that decides when the mouse is being clicked on a
visible line on the screen. The algo must be written to work with any possible line.

When drawing a line segment, the system’s graphics software takes care of filling in all
the pixels between the endpoints. Line hit testing is an input processing problem, and
requires the student’s program know something about where the line is. How shall a line
be represented? For simplicity, we consider the line to extend infinitely. The following

7

question provides the starting point for thinking about how best to represent lines (and
other geometric objects):

What is invariant numerically about the points on the line?

In our formative years, we’re taught that a straight line is represented mathematically as
the set of points [x y] satisfying the equation:

 y = m x + b

where m is the slope (dy/dx), and b is the y-intercept. What’s wrong with this theory?

The problem is that it cannot represent vertical lines. For such lines, the above equation
seriously bombs, first because calculating the slope will force a divide by zero, which
generates a computer error. Second, where does a vertical line intercept the y-axis?

The slope-intercept formula isn’t a problem for humans doing pre-computational, paper
and pencil geometry because we are good linguistic exception handlers, and adapt to
vertical lines as a special case, by writing:

 x = 7

From an algorithmic standpoint, changing the form of representation to handle special
cases is a sign that the choice for representation is not general enough. The ideal is to
represent all cases in the same manner with no exceptions.

The problem with slope (dy/dx) is that a single scalar number does not have quite enough
information capacity to comfortably represent all possible line orientations. A similar
problem arose trying to shoehorn 2D direction into scalar angle θ radians. In
computation, the resulting singularities posit ugly exceptions that are better avoided.

The remedy is to allow the use of more than one number in representing line tilt. We use
a direction vector to solve this problem.

As can be seen, dx and dy are still the key pieces of information needed to compute line
orientation. The faux pas we avoid is collapsing dx and dy into single number dy/dx.
Division destroys information. ∞ works fine for brains, but in the computer, there is no
way to represent such an indistinct quantity. ∞ just doesn’t compute. This is one of the
adjustments we make in the switch to algorithmic math.

o = [dy -dx]norm

o We use the direction perpendicular to the line
to represent its orientation o:

By allocating two real numbers to represent
line orientation, the exception for vertical lines
is eliminated, and all line orientations can be
represented in a uniform manner.

Line orientation o (replaces slope)

8

Next, the student learns about the dot product of two vectors. We introduce the dot
product non-traditionally, by studying the dot product of a direction vector and an
arbitrary point:

y

x
o

l

L

p • o == l

Equipped with line orientation
and the dot product, we may
proceed to the vector-based
invariance formula for points on
an infinite straight line.

If o is the line’s orientation, and
l is its signed distance from the
origin along direction o, then
for every point p on line L:

 p • o == l

Graphically, think of line L’s
orientation o as an alternative x-
axis. Every point on line L
projects onto the same

coordinate (l) along this new

axis direction o.

We let direction vector
d play the role of an
alternative x-axis.

The dot product

 p • d

serves to compute the
new coordinate of any
point p along this new
axis d (colored
distances indicate new
coordinate lengths).

dot product

p • d =

p.x * d.x + p.y * d.y

Invariance of points on a line

9

This vector line predicate is a close cousin to the standard form (and Hessian), but
surpasses any purely algebraic formulation in that its numeric features have clear spatial
meanings that the student can latch onto. The two features needed to represent an

infinite 2D line are its orientation o, and its signed distance from the origin l . This leads
to the following software representation:

public class Line {
 DirVec o; // orientation (perp. direction)
 double l; // signed distance from origin (along o)
}

Using this representation, the line hit testing problem may be solved in a few lines of

code. The scalar result p • o - l gives the signed proximity of a point to a line (how close
is it, and on which side it falls):

public double signedProximity (Line L, Vec2 p) {
 return dotProd(p, L.o) – L.l;
}

Hit testing the mouse-click for proximity to a line falls out naturally at this point. The
student merely needs to pick a reasonable pixel distance forgiving pecking inaccuracy,
and then decide if abs(signed proximity(Line, mousePos)) falls within that many pixels.

Coordinate Rotation using newXaxis instead of angle θ

Applying the 2D vector line predicate, a student begins to appreciate the power of the dot
product to transform coordinates for an arbitrary new axis direction. This sets the stage
for introducing generalized 2D coordinate rotation, specified by newXaxis:

x

y

newYaxis
p1

p2

p3

newXaxis

Coordinate rotation
specified by newXaxis

10

Students should already be familiar with coordinate rotation as the process of adopting a
new coordinate system, transforming points into new coordinates. In algorithmic
geometry, the “amount” of rotation is specified by simply saying where you want the new
x-axis to fall. You specify newXaxis as a direction vector. The advantage is that a new
axis direction may be obtained from points without invoking angles and trig. The inverse
transcendentals arccos, arcsin, arctan are messy computationally (mathematically, they
are not even functions). Direction vectors are always well-behaved computationally.

Having already automated the dot product function, the student is able to write a
workhorse method to rotate point p for newXaxis. This method is highly streamlined
compared to traditional coordinate rotation specified via angle (and requiring trig).

public Vec2 rotate (DirVec newXaxis, Vec2 p) {
 DirVec newYaxis = rot90CCW(newXaxis);
 return new Vec2(dotProd(p, newXaxis), dotProd(p, newYaxis));
}

Another way to think of 2D point rotation working, using matrix operations, is to
conceive of a 2x2 matrix R, having as its column vectors the new x and y axis directions:

 R = [newXaxis newYaxis]

and implementing point rotation as a vector p dotted with R:

 p’ = p • R

The role that R plays in software invites us to refer to such an object as a rotator. This
concept will become very potent when the student segues into 3D. At that point, she will
arrive prepared mentally to rapidly accept the use of 3D rotators. These rotators make
mental mincemeat out of working with freely rotating bodies. They represent a quantum
leap in mental clarity and elegance over roll-pitch-yaw angles, while putting to bed all
the computational and representational hassles associated with the latter.

At this point in the course, the 2D representational foundation is built, and attention turns
to solving the basic intersection algorithms involving lines and circles:

Typically, these intersection problems will each require algorithms stringing together 3-5
mental steps and 5-15 new lines of code. Considering that the algo must handle all
possible cases, a degree of mental parsimony is being harnessed in these solutions.

2D intersection problems solved algorithmically

11

Let’s look at the intersection of two lines as an example. Problem statements are
graphical. Students have to process the lines using their vectorized representations.

Given:

L1 = [o1 l 1]

L2 = [o2 l 2]

Solve for: i

Students are coached to think of a special case that would be easier to solve. Wouldn’t it
be easier to solve if one line were parallel to an axis? Coordinate rotation can be used to
morph any problem into this special case. Let’s pick one of the lines, and rotate
coordinates under its influence to make that happen....how about L2? What if we use
L2’s orientation to define the newXaxis:

12

Rotating coordinates under the influence of L2 makes L2’ stand perfectly vertical.

Rotation does not change a line’s signed distance from the origin. So, in the rotated

space, the point i’ lies on the vertical line having x’ coordinate l 2:

 i’.x = l 2.

We rotate L1 L1’ computationally to make use of its information. Its distance from
the origin is preserved, so all we need to do is rotate its orientation:

 o1‘ = rotate (newXaxis, o1) = rotate (o2, o1)

All we are missing now is i’.y. The line equation of L1’, given an x’ coordinate,
determines a y’ value. A little algebra solves for y’:

[l 2 i’.y] • o1’ = l 1 (line equation where i’.x = l 2)

l 2 o1’.x + i’.y o1’.y = l 1 (expand the dot product)

y
’

x
’

i’

p‘ • o1’ == l1 l2

L2/

L1/

Line intersection problem “rotated” into easier special case

13

 i’.y = (l 1 - l 2 o1’.x) / o1’.y (rearrange, solve for i’.y)
We now have both coordinates for intersection point i’. After that, we just need to
unrotate i’ i so that the result comes out in original coordinates. A sibling function to
rotate called unrotate will exactly undo the transform when handed the same
value of newXaxis.

The mental steps captured in the sketches and algebra serve as the specification for the
source code algorithm. Each student translates their mental steps and sketch into Java:

public static Vec2 IntersectPtOf(Line L1, Line L2) {
 if (parallel(L1,L2)) return null;

 // rotate coords so that L2’ is vertical
 DirVec newXaxis = L2.o;
 DirVec L1_o_prime = Vec2.rotate(newXaxis, L1.o);

 // find i_p, the intersect pt in rotated coords
 Vec2 i_p = new Vec2 ();
 i_p.x = L2.l;
 i_p.y = (L1.l - L2.l * L1_o_prime.x) / L1_o_prime.y;

 // unrotate i_p back to original coords
 Vec2 i = Vec2.unrotate(newXaxis, i_p);
 return i;
 }

Notice that the degenerate case is handled up front. A null result signifies no
intersection. The student solves parallel(L1, L2) as a separate algorithm.

The final step is to test-run 2D line-intersection using on-screen graphics. A pair of
lineSegs whose endpoints are mouse-editable serves as the testbed. The student
programs in a small circle to highlight her algo’s computed intersection point.

As the student drags one lineSeg
around, the circle tracks with the
“X” (unless there is a bug).

Interactive graphics testing throws
dozens of test cases at the algorithm
per second. It is a very efficient
way for the student to become
confident a general, automated
solution has been achieved.

Test of line intersection algorithm

14

The intersection of two circles is approached in a similar fashion, using both coordinate
translation and rotation to massage the problem toward a friendly special case. The
finished algorithm is a gateway result, opening the door to solving a whole host of
advanced problems in robotics, graphics and navigation. There is a palpable sense of
empowerment felt by the student as they conquer this problem, aware that they are no
longer hamstrung by the idealizing assumptions that limit paper and pencil geometry. The
intersection-of-two-circles problem crosses a threshold into a new realm of cybermath.

The methodology relies heavily on visual thinking, and understanding how visual
manipulations correlate to vector processing operations. Ability to draw quality sketches
is a key success factor. This is because the “aha” moment in algorithmic geometry is
usually harvested in paper and pencil mode. Coding the algorithm is all downhill.

Each student is required to keep a notebook of sketches. These comprise graphic
specifications of the algorithms, and are the key to understanding how the lines of code
work to solve the problem. They trace the thought process leading up to coding.

At the midpoint of the course, the student will have written a 2D vector geometry library
comprising about 8 classes, 120 algorithms and 750 lines of code, covering points,
distance, directions, lines, lineSegs, triangles, circles, arcs, translations and rotations.

 A Problem Challenge in Robot Motor Coordination

Here is a robotics challenge students may elect to
solve, applying their new understanding of 2D:

The painting hand at h is maneuvered by the
shoulder motor at sh and elbow motor at el.
The upper-arm length is r1, and the forearm
length is r2. You are given the coordinates of
sh.

For any specified point p the paint hand h can
reach, what shoulder and elbow angles

[θsh θel] should be assumed?

The elbow motor angle is with respect to the
upper arm on which it is mounted. The home
positions (θ == 0) of the motors are shown in
the folded-up arm:

15

Solving this problem involves 4 mental steps and about 10 lines of new code. The “aha”
moment comes when the student sees in their sketch that the elbow is constrained by
fixed distances from 2 points ([sh r1] , [h r2]). Therefore, el falls out from the
intersection of two circles. That algorithm is already a done deal....off-the-shelf!

Once el is obtained, direction dsh el can be computed, then converted to shoulder motor
angle θsh. The student takes for granted his lower-level functions already written.

The elbow motor angle requires one additional step: After delh is computed, it has to be
rotated into the upper arm’s moving frame-of-reference (defining 0.0 radians for the
elbow motor). In the folded up arm, we can see that this newXaxis always points from
the elbow back toward the shoulder (del sh). Directions are rotated just like points:

 θel = angleOf(rotate (del sh , delh))

This problem is typical of the degree-of-difficulty a student can manage after a half-
semester of algorithmic geometry. To the uninitiated, this may seem audacious and
unrealistically advanced for high school juniors and seniors. But if you interview the
initial students who’ve gone through the pilot, they explain the success of the approach in
these terms:

• the geometry concepts are small in number, elegant, powerful, and designed to fit
together like a jigsaw puzzle.

• the Java is a little strange initially, but is picked up by osmosis in the first 2 weeks

• theory concepts are immediately put into practice hands-on writing interactive graphics

• the algorithms written pile on synergistically...in every algo, we leverage past success,
always moving to a higher level – the automation of math problem solving is way cool!

Being Swept Up into 3D

The point of spending 8 weeks learning 2D vector software geometry is twofold. The
student is being prepared intellectually for an easy glide up into 3D. In addition, the
student’s 2D library will serve as a workhorse for solving 3D problems.

In the pilot, the transition was surprisingly spontaneous. As soon as I let down the
gauntlet to start into 3D, my students made a copies of their Vec2 class library, named it
Vec3, and with no prompting, rewrote every vector function to work with [x y z]. They
surmised how a 3D direction vector is defined and computed. The only help needed on
DirVec3 involved the converter from polar angle [φ θ] d = [x y z]. With some

16

coaching, their 2D converter [θ] d = [x y] did most of the heavy lifting.

As motivation for the cross product, the student is challenged to extend the concept of
coordinate rotation to 3D.

x

z

y

o

l

The first structured object taken on in
3D is the plane.

What is invariant about the points on
a plane?

The analogy to the 2D line is
unmistakable. The plane has a
directional feature (its tilt), and a
positional feature (its signed distance
from the origin).

We can represent it using the same
predicate as the 2D line:

 p • o == l

It will take introduction of cross
product theory before being able to
compute a plane from 3 points.

x

z

y

newZaxis
newXaxis

newYaxis Just as in 2D, we can specify a
general-purpose coordinate
rotation by supplying a valid
new set of axes.

Students can see their way to
rotating p p’. There is one
more dot product to be
computed for the z-coord.

What is not obvious is how to
compute such an axis set (what
we in software call a rotator,
the operational equivalent of an
orthogonal matrix).

 p • o == l

Invariance of points p on a plane

17

 Rotator R = [newXaxis newYaxis newZaxis]

18

For this, the student is shown the cross product of two direction vectors a b, and how
(a x b)norm computes their mutual orthogonal direction:

The cross product is the key vector function needed to write algos that produce rotators
on demand, for example:

 Rotator R1 = RotatorForNewXandYAt(newXaxis, newYaxis);

 Rotator R2 = RotatorForNewZAt(newZaxis);

In the latter case, newZaxis underspecifies the rotator, but this function is quite useful
nonetheless in cases where we are willing to let the software pick newXaxis and
newYaxis arbitrarily.

 Point Invariance Predicate of a 3D line

What is invariant about all the points p on an infinite 3D line? The conventional
approach (web and textbooks) springs from point pair p1 p2, and appeals to a linear
combination of them parameterized by t:

 p == p1 + t (p2 – p1)

A point invariance predicate is a formula you can plug arbitrary point p into, deciding if
p is included in the object. The above formula fails as a predicate! Why? The value of t
is unknown. To compute whether p is on given line [p1, p2], we’d have to also be
given t. This representation is what a computer scientist would call a weaker generative
form....it suffices to generate points on the object, given values for t:

 p = p1 + t (p2 – p1)

but lacks the strength of an invariance predicate. The compare (==) and assignment (=)
operators above mean totally different things in computer science. Precomputational
geometry makes no such distinction. Predicates calculate true-false decisions, such as
whether an arbitrary point p is included in an object.

In algorithmic geometry, when deciding how best to represent an object in software,
students are coached to seek out the object’s point invariance predicate, a formula that
can compute whether arbitrary point p is included in the object.

a

b a x b

19

How can we state the invariance of points on a 3D line in such predicate form?

The invariance of all points on line L is as follows: If coordinates are rotated in such a
way that newZaxis is chosen parallel to the line, then in the new coordinate system, the
line will stand perfectly vertical. All points along it will share an invariant [x’ y’] value.

We represent an infinite 3D line as a rotator R and an invariant [x’ y’].

The invariance of points on L can now be captured. For any point p on L,

 rotate (R , p) == [x’ y’ --] 3D line predicate

How can R and invariant [x’ y’] be computed? Two points are sufficient to determine a
line. Assume we are given p1 and p2 (p1 != p2). (!= means “not equal to”)

First, we calculate the direction dL going from p1 p2. This is just the normalized
vector difference p2 – p1:

 dL = (p2 – p1) norm

R wants to specify a rotation where this direction dL defines the newZaxis. This is the
coordinate rotation that will make the line stand perfectly vertical (aligned to z’ axis):

 Rotator ZAlignRotator = RotatorForNewZAt(dL);

Then, rotate either given point (p1or p2) by this amount to calculate the invariant [x’ y’]:

 [x’ y’ --] = rotate (ZAlignRotator, p1);

x

z

y

L

newZaxis

z/ L/

x/

y/

[x/ y/]

 R

20

The “constants” in the object’s point invariance predicate pin down all the information
needed to represent the object:

 L = [ZAlignRotator invariant [x’ y’]] (representation of 3D infinite line)

In Java:

public class Line3D {
 Rotator ZAlignRotator;
 Vec3 invariantXY;
}

The advantage of this approach becomes apparent once you begin tackling problems
involving 3D lines. For instance, on our current final exam, students are asked to design
an algorithm solving for the intersection of arbitrary sphere SPH and line L.

A straightforward solution awaits if you rotate coordinates making the line stand vertical.
The rotator that does so comes “free” in the line’s representation. Rotating the sphere
merely entails rotating its center c c’. You should be able to solve the special case on
the right. The [x’ y’] coordinates of the intersection points are the invariantXY feature
of line L. Their z’ coordinates fall out using c’ and Pythagoras applied to the red triangle.
Unrotate the solution points by ZAlignRotator to finish up.

Generating points on a 3D line using a parameterization variable is no problem. In the
rotated space where the line stands vertical, the z’ coordinate parameterizes all the points
along the line...you just pick a z’, tack it onto invariant [x’ y’] and unrotate:

public generatePoint (z_prime) {
 return unrotate (ZAlignRotator,
 new Vec3 (invariantXY.x,invariantXY.y, z_prime));

21

}
The 3D object intersections students solve algorithmically include the following:

Line-Plane Plane-Plane 3-Plane Sphere-Sphere

Sphere-Circle3D 3-Sphere Sphere-Plane

3-Sphere intersection forms the basis for GPS positioning. When students master this
algorithm toward the end of the course, there is a “heady” feeling analogous to physics
students of the ‘50s having teased apart how a transistor works, or a century earlier,
Victorian kids having figured out how basic electricity works.

The rarified air these kids breathe has much to do with the fact that they know they are
already surpassing at a young age what very few older adults can understand. Such
highly cerebral, transcendent experiences are exactly what is needed to propel young
people to become scientists and inventors.

A menu of 3D problem challenges (mini-projects) awaits the student the last 2 weeks of
the course. Students may elect 2 topics from the following menu (which is expanding
every year):

 3D wireframe graphics Robotic gas pump attendant

 CAD pipe rendering graphics Optical reflection and refraction

 Computer Vision Molecular Brownian Rotation

 Interstellar Navigation (by camera star tracking)

In each challenge, the student solves an advanced 3D geometry problem that opens the
door to competence in an area of science-engineering. For example, for molecular
biochemistry modeling, you are asked to devise an algorithm that confers a perfectly
random 3D rotational orientation to a virtual molecule. Or, in computer vision, infer the
location of a 3D point by acquiring it in images taken from two different vantage points.
Or, in interstellar navigation, deduce a spacecraft’s 3D attitude by sighting two very
distant reference objects (requiring application of rotational inference1).

These challenges can typically be solved in less than 20 lines of new code, but may
require the better part of an hour of trial and error in paper and pencil mode to solve the
key geometry puzzle. When the solution finally runs on the student’s computer, the
program is exercising a large portion of the student’s geometry library going back to the
beginning lab. The edifice of one’s mental effort over dozens of hours is somehow
compacted into a split second of focused brilliance, vanquishing a college-level (or
advanced-degree) problem. Students expectably come away with a surge of confidence
about their ability as problem-solvers.

22

For example, the interstellar navigation problem is a PhD-level problem (judging by the
few space scientists who have published papers addressing it). Students who can
problem-solve at this level before entering college are going to see themselves as math
whizzes. This is the type of learning experience we educators should be shooting for.

 Results of Initial Proof-of-Concept Course

The first teenagers to study algorithmic geometry completed a proof-of-concept pilot the
summer of 2005. The initial testbed involved two students freshly minted from high
school, and in recent possession of their graduation laptop gift. The purpose of the 9-
week, 72-hour course was to obtain an initial reality check on the feasibility of imparting
all the novel aspects of pedagogy, primarily the revised theory foundation and the uphill
of some computer programming.

The syllabus (see Appendix A) was based on a draft version of Flexing the Power of
Algorithmic Geometry2. The software toolset was based on CodeWarrior/Java (we’ve
since switched to Eclipse/Java). Hand-drawn posters were prepared for theory lecture
graphics. We rotated the class meeting amongst our three homes, with three classes a
week totaling 8 hours. There was no homework, a norm we have adopted in order that
students benefit from working on problems in an environment with full technical support.

The class rhythm consists of a short theory lecture-discussion followed immediately by a
programming lab exercise where students individually write code implementing the
theory, and then test their solutions for correctness by means of interactive graphics.

Appendix B presents a walkthrough of a complete problem encountered 3/4 way through
the course – the intersection of a sphere and 3D circle.

One student had never programmed before, and the other had one year of Java. The two
students are profiled briefly here:

“David W.” Finished grade 12, SAT-M = 670, received C in geometry, no
programming experience, team leader 2 years in FIRST robotics competition.
Currently: Engineering junior at Purdue.

”Cliff B.” Finished grade 12, SAT-M = 720, Logo Turtle Graphics (k-5), 1-year
AP CS Java. Currently: junior in Mechanical Engineering at Cal Poly SLO.

Toward the end of the course, both solved the problem of GPS positioning (intersection
points of 3 overlapping spheres), and interstellar navigation by star tracking (rotational
inference, directional triangulation). The source code libraries written by these two
students demonstrate a proficiency that would be judged extraordinary at the pre-college
level. Inasmuch as the students wrote their Java code without prompting, it is
inescapable that the student possesses a rigorous, hands-on understanding of introductory
vector math.

23

 How is it Different?

Let’s now try to summarize, and in doing so answer the seminal questions about
algorithmic geometry posed at the outset. What is it? Where does it come from?
Why is it emerging now? How is it different? And, where does it fit in?

It is a modern style of geometry undertaken as a close-knit partnership between human
and computer. Using software programming, the person translates paper and pencil
sketched solutions into working algorithms that crank out numerical answers, handling all
possible cases of input. Previously solved problems are fully automated, and sit at the
ready to be called into action to assist in solving the next problem. This pattern of
solution reuse leads to highly layered, highly leveraged activity, in which the aggregate
of one’s past mental effort is brought to bear in an instant solving a daunting problem, but
the steps leading up to it involve ordinary mental effort focused on bite-sized chunks.
The synergy going on in this partnership is a blend of mathematics, computer science/AI
and cognitive science/psychology. You could call it applied cybernetics.

The thoughtware vested in the partnership straddles grey matter, sketches on paper,
source code, and the computer behavior while exercising it. The geometry becomes
operational in silicon, and springs to life in vivid color on the screen.

The foundational concepts are steeped in the classical Greek distance formulas, Cartesian
points, and direction vectors (popularized by mathematical physicists3). While points
and distances are represented in software the same way as has been done for 50 years,
slope and angle are more recently supplanted by direction vectors, which stand up better
to computer-based representation. Accordingly, all directional properties, object
features, and operations are restandardized using direction vectors. Coordinate rotation
is done using rotators, which specify a set of new axes (basis vectors). Rotators rotate
points and directions by dot product projection onto new axes. Angle is demoted in
importance, and with it, trigonometry. 3D rotators streamline and simplify coordinate
rotations that previously had to be represented using combination roll-pitch-yaw angles.
The singularity, ambiguity and asymmetry headaches inherent in representing freeform
solid-body rotation with a set of angles are burdens no 21st century student will miss.

Object representations are arrived at by asking what is invariant about all the points on an
object, and striving to capture the answer in a computable point invariance predicate.
This approach points the way to streamlined representation of a 3D line, which embeds
an Z-axis-alignment rotator. Problems involving lines in 3D (such as the intersection of
two planes) are vastly simplified, as they now can be solved in the rotated space where
the line stands vertical. This representation offers a major simplification over the
traditional linear algebra representation, based on p = p0 + t (p1 – p0).

Most importantly, the degree-of-difficulty of problems that may be solved is elevated
beyond what most would think possible for high school students. An example is solving
for the 2 intersection points of 3 overlapping spheres, the basis for GPS positioning. A
more sophisticated example is interstellar navigation, in which the spacecraft can assume

24

any arbitrary 3D attitude. Problems of this type are notoriously daunting using angles.
Using a rotator instead to represent craft attitude simplifies things, and prepares the
student to learn how to infer the craft’s attitude by observing two remote galaxies, a
technique called rotational inference. Once attitude is determined, the craft’s location
may be solved by sighting 3 nearby stars, and applying directional triangulation (the
intersection of 3 planes). Judging by the aerospace literature, star-tracking navigation is
a PhD-level problem. However, near the end of their first algorithmic geometry course,
a high-school student will have amassed the know-how and software library to solve
interstellar navigation geometry in 3 mental steps, and 11 additional lines of code.

While the problems solved are very advanced for high school, in time we’d like to prove
that algorithmic geometry is no more difficult to teach and learn than traditional
geometry. The concepts and methodology are different. Working intimately with one’s
personal computer by committing each problem solved to an automated algorithm seems
to change the mental ergonomics of geometry in a fundamental way. Ordinary mental
effort is applied in bite-sized chunks, and the human brain is tasked with short bursts of
incremental creativity, its key strength. By layering solutions, the human is able to
rapidly ascend a learning curve, leading to geometric power and sophistication in under
100 hours of formal theory and lab exercises.

The algorithmic approach overcomes a key difficulty inherent in traditional analysis. An
example can be seen in the intersection points of two circles problem. A pure analysis
using 10 scalar variables [x1 y1 r1] [x2 y2 r2] [ix1 iy1] [ix2 iy2] bogs down
quickly as the circle constraint entails squaring the difference of variables:

 (ix1 – x1)2 + (iy1 – y1)2 = r12

There is an explosion of terms. When a square root must be applied to a sum or
difference, analysis has little to offer...further simplification grinds to a halt.

Software geometry avoids this headache by virtue of the fact that the variables being
processed are not unknowns. Though they are treated abstractly as unknowns by the
programmer, when the computer takes over and runs the algo, the inputs processed are
always hard numbers. Arithmetic operations crunch the numbers, yielding other hard
numbers. When the software comes up to a square root operation, the operand expression
has already been crunched down. Processing consolidates information. That’s on the
computer side – on the human side, we still have the freedom to think through a problem
using abstract unknowns...points, directions, distances, and higher-level objects. In the
partnership, human and computer play to their respective strengths, and sidestep their
limitations. Appendix B illustrates a classically daunting problem, the intersection of a
sphere and 3D circle, and how the algorithmic approach reduces it to 4 inductive mental
steps, and 17 new lines of Java code.

A few words should be said about the difference between geometry and algebra. While
there is some overlap superficially to the content presented in a linear algebra class, the
study of geometry is quite distinct in that the subject matter is about space. It benefits

25

from a person’s lifelong spatial experience, and the visual imagination processes that
come with it. For instance, when confronting the problem of how two planes intersect to
form a 3D line, there is no need for formal axiomization or proof of this
phenomenon...we rely on the student’s intuition. Visual intelligence makes geometry less
abstract than algebra. This is one of the arguments why Algorithmic Geometry is likely
better matched to high school juniors and seniors, compared with AP Linear Algebra4.

Unlike linear algebra, all the quantities we use in algorithmic geometry have spatial
meanings that one can point to in a sketch. Let’s compare algebraic and geometric
representations of a plane:

 ax + by + cz – d = 0 (algebraic plane equation)

 p • o == l (algorithmic geometry plane predicate)

Syntactically, after expanding the dot product, these two formulas look almost identical.
However, what does “a” stand for in the top equation? It doesn’t have any meaning other
than as the coefficient of x.

Through the medium of sketching, these geometric concepts benefit from the student’s
native visual intelligence in problem solving. For example, imagine what will be the
effect of a 3D coordinate rotation on a plane? With the right visualization graphics (or
handheld manipulatives), it is easy to become convinced that rotation has no effect on the

value of l. The plane’s distance from the origin is preserved during coordinate rotation.

It is also obvious that the plane’s orientation o must change for a new choice of axes.
Since 3D directions like o are conceived as points on the unit sphere, and we know how

In the geometric formula, all the
individual quantities have spatial
meanings:

o is the plane’s orientation, the
direction pointing perpendicular to
the plane (its “normal” direction).

l is its ± signed distance from the

origin, + defined by arrow o.

p is any point in 3D space. If p is
in the plane, the comparison for
equality will evaluate true. For
all other points, it will be false.

x

z

y

o

l

p • o == l

26

to rotate any point p for a new set of axes R, then it is a simple matter to transform the
plane’s orientation o: we’ll rotate it just as if it were a point:

 o’ = rotate (R, o) R = [newXaxis newYaxis newZaxis]

Combining these mental steps, the student is now poised to write a simple algorithm that
automatically transforms any plane object PL PL’ for desired coordinate rotation R:

public static Plane rotate (Rotator R, Plane PL) {
 return new Plane (Vec3.rotate(R, PL.o), PL.l);
}

Compared to algebra, advanced geometry is much more solidly grounded in real world
experience and intuition, and might therefore be expected to “click” with a wider group
of high school students than the more abstract and rule-based linear algebra. The
feedback from our initial students, both now in engineering college, is that algorithmic
geometry gave them a decided leg up understanding the linear algebra and engineering
vector math they encountered. We think of math-geometry education, like Papert5 and
Piaget before him, as a process of hanging formal education onto a person’s native
geometry intelligence, something that will serve a lifetime in situations requiring spatial
problem-solving.

The algorithmization of one’s math know-how is a truly epochal, revolutionary change.
Under this new methodology, you solve problems in bite-sized chunks, doing the
creative, symbolic work with help from paper and pencil, and committing each
incremental solution to an automated algorithm. Assuming the creative solution and its
edifice in software can handle all possible cases of input (i.e., you design general
solutions), then algorithms may be reused in any new problem context without ever
revisiting the details. You are afforded the luxury of forgetting how you solved the
problem while applying it to solve harder problems. This is a remarkably effective way
to allocate all-too-scarce human attentional resources. It allows us to solve wicked
difficult problems with ordinary mental effort, the complexity conveniently “hidden” in
the mental work previously expended and now compartmentalized in software. You
have to experience this mental accelerant firsthand to get an appreciation for it. Once
you taste the power, you will find the sheer economy irresistible.

Problems are only focused on intently for a short time. The typical problem takes about
20-30 minutes total, including problem-definition, solution sketch, pseudo code, Java
coding, and algorithm testing. Over a 145-hour course, ~200 algorithms are mastered.
As each problem is solved, it can be walked away from confident that it has been solved
for good. Appendix B illustrates a complete walkthrough of an advanced 3D problem.

The approach taken in algorithmic geometry differs significantly from first-generation
computer-assisted math, e.g. Geometers Sketchpad6, Cabri, MATLAB and Maple. In
first generation tools, the goal was to take math theory content predating the advent of
computers, and interactively bring it to life. This pattern of infusing old content into a

27

new medium is exactly as McLuhan7 described in the 1960s. In 2nd generation
cybermath, the theory content itself begins to morph under evolutionary pressure wrought
by 50 years doing math in the new medium (computing). The theory foundation that
emerges is post-computational, meaning basic concepts are chosen to suit a human-
computer partnership solving geometry problems – the basic constructs desired are ones
good for algorithm-writing. 2nd generation cybermath invites a significant rethinking and
refactoring of math education content, asking the question, how would the basic ideas of
a branch of mathematics change, had the subject waited to be invented until the age of
computers?

Such an intellectually imaginative approach is the one needed to get our students moving
upward in the international sweepstakes that will determine standard-of-living a decade
or two from now. The Hart-Rudman Commission Reports8 laid out the argument that
math-science education is a predictor of a nation’s future economic success. Their
visionary document got me started on my quest to modernize 9-12 geometry education.

 Why is it appearing now?

Algorithmic geometry is emerging at this time because a growing cadre of professionals
cross-trained in math and computer science have discovered the immense power and
synergy at their fingertips as they codify their math knowledge into an expanding library
of solutions to problems. Vector math is a natural fit to computation, as it allows the
problem thinker to delegate all the scalar arithmetic drudgery. This frees up human
attention to be focused on higher-level objects and relationships. Since previously
solved problems never have to be revisited, and provide fodder for solving yet harder
problems, the human side of the partnership can ascend a rapid learning curve.

Direction vectors originated in mathematical physics3, and have gradually worked their
way into scientific software over the past 30 years.

The shifts in geometric theory are motivated by the need to simplify and restandardize the
topic for ease in thinking and writing algorithms. The translation of problem-solving
thought sketches pseudocode runnable code has been designed for minimal
friction and maximum compatibility. The pieces are made to fit together like a Lego set.
Clearly, traditional geometry had no such requirement in mind. The first 50 years of
computer geometry concentrated on translating pre-computational geometry ideas
literally into the new medium. Trig library functions like arccos that programmers find
annoyingly ill-designed for computation are an example of this dutiful allegiance (arccos
has two possible angle solutions).

The next 50 years will see a new generation of geometry ideas flourish whose
foundational concepts fully anticipate and integrate the medium of computation, as if
geometry had waited to be invented in our post-computational world. The new geometry
comes to grips with the key representational issues in delegating geometry work to
computers. The observation that angle overcompresses directional information at a cost
of algorithmic complexity exemplifies 21st century math-informatics thinking.

28

High quality software programming tools suitable for introducing math students to
software geometry, available for free over the internet (Eclipse/Java), are a recent
phenomenon in the years since the dot-com explosion. A high school course for math
students involving programming would not have been practical or affordable en masse
before the post-2000 generation of software tools came on the scene.

 Fitting Algorithmic Geometry into the Curriculum

Where does a topic like this fit into the curriculum? This is a complicated question, but
a good starting point is recognizing that there is a sub-group of high school students who
are aggressive math learners. Having taken accelerated math since middle school, by
junior or senior year, these students have exhausted all the AP offerings: calculus and
statistics. This suggests a niche for a capstone course in advanced geometry.

Unlike calculus and statistics, there is no standard freshman-level geometry course to be
repackaged as an AP course. At the collegiate level, geometry content (other than
remedial) is highly specialized by math-science-engineering discipline. For instance,
a Physics major will learn the vector calculus of gradients, divergence and curl as a warm
up to electro-magnetism. A math major immerses in matrix math via Linear Algebra,
using MATLAB. A computer science student majoring in computer graphics will be
introduced to 4D homogeneous coordinates implemented in C++. An engineering
student specializing in robotics will learn yet another approach based on Jacobian matrix
inversion. Computational Geometry is offered in some computer science departments as
preparation for Geographic Information Systems. Computational biochemistry is still
developing its own unique geometry based on tilings. All of these specialties have, as a
common thread, vector geometry using software as the medium of expression.

Algorithmic Geometry is an attempt to simplify and standardize a vector geometry
foundation -- fully integrated with the software medium -- and applicable to a wide swath
of STEM pursuits. Developing hands-on competence tackling wicked-difficult problems
is intended to seduce young people with their power as problem-solvers.

Why should it be introduced in high school? The rationale is simple – the recruitment of
students into the STEM pipeline has to match up with the student’s decision timeframe –
grade 11-12 being the critical time when college and major are being decided.
Algorithmic Geometry is equal parts STEM marketing and state-of-the-art geometry
education. Attentive to social bonding as a parameter, we are adopting a “team
teaching” approach, where a credentialed 9-12 math teacher will go through the training
workshop alongside his/her handpicked student TA (bringing Java experience). The
objective is a more supportive teaching environment, and for the learners, a peer role
model already comfortable with algorithmic geometry.

NCTM’s Principles and Standards for School Mathematics: Standards for Grades 9-129
calls out representation as the deepest level of math understanding, and champions the
opportunity at every grade level to apply math using the computer, and to connect to real
world applications. The question of how best to represent geometric properties and

29

objects, bridging the media of brain, pencil and paper, software programming, computer
graphics and science applications is the paramount theme of algorithmic geometry.

What level of math understanding will enrolling students need to be successful? This is
one of the research questions we still have ahead of us. It seems reasonable that the
readiness criteria will be similar to electing AP calc or stat. Students should be well-
versed in geometry, algebra, trigonometry, functions, and the basics of vectors and
matrices. Scientific notation and familiarity with very small numbers will be helpful in
understanding how a digital computer represents real numbers. A faculty for spatial
visualization is fairly indispensable, for instance, the ability to rotate a 3D object
mentally.

Ability to draw passable-quality sketches is a necessity. Ability to think through proofs,
and/or compose complex creative output (music, poetry, writing, art, drama, sewing) are
other readiness variables we’ll be looking at. In terms of social orientation, ability to
work solo deeply-engaged in a problem for up to 30 minutes is a success factor. For our
earliest students, we’re looking for some leadership and early-adopter comfort, given the
additional role these students will be offered as paid TAs.

What about computer science / programming experience? This is an important research
question, both in terms of student readiness, and teacher preparedness. Based on the
long, storied history of computers in learning, we can almost predict that schools without
an established computer science curriculum and staff will not be ready to participate as
pilot sites. Some local Java talent must be cultivated from which to recruit TAs, not to
mention managing the laptop-desktop-software infrastructure on a day-to-day basis. We
are realistic about piloting in schools where CS is established.

Given that, the course has been designed so that no previous software programming is
required. Only a small subset of Java is used, and the naturalness of Java mathematical
expressions makes the language intuitive. The labs are constructed so that Java is
learned piecemeal by example and mimicry. In the pilot, one of the two students had no
previous programming, and by the end of week #2, had picked up the essential language
skills. This is not a programming course – the focus is on geometry representations and
problem-solving using sketching. Software programming is viewed as a medium in
which applied math workers nowadays store and exercise their accumulated know-how.
The power of automating one’s brainpower becomes self-reinforcing, starting from the
first lab. We would not attempt to teach a pilot course without a TA having Java
experience working in support of the primary instructor, where both have been through
the course and received training in managing the course logistics. A tech support person
also wants to be on-call nearby to resolve non-courseware glitches.

The Computer Science Teachers Association (CSTA) in conjunction with ACM has
developed a visionary, comprehensive roadmap, A Model Curriculum for K-12 Computer
Science10. The US is lagging behind Israel, Scotland, France, Germany, Finland, South
Africa and Ontario (Canada), places where computer science (or informatics) has become
required curriculum11. Not to be confused with computer literacy, computer science

30

education prepares students to integrate all that computing has to offer in whatever
pursuit they embark on, with awareness of what is technically possible and the ethical
issues that permeate such powerful technology. And, it offers a pre-professional track for
those wanting to pursue careers in software development and IT. The goal is a well-
educated citizenry able to effectively govern technological society for the common good,
and economically, able to maintain its position in the global high-tech arena.

In terms of cognitive skills, the objective is to steep every child in algorithmic problem-
solving. This means the ability to confront a complex problem in its entirety,
systematically break it down into its constituent parts (including side effects), and then
generate rigorous solutions in terms of a set of tangible steps that move from the starting
point to the solution. The visionary genius behind this plan is that systems analysis and
design will be taught as universal skills, the same way reading and writing expanded in
the 20th century. Presumably, it will confer the same egalitarian benefit.

The Model Curriculum defines four levels of pedagogy spanning k-12:
 Level I: Foundations of Computer Science (k-8)
 Level II: Computer Science in the Modern World (grade 9 or 10)
 Level III: Computer Science as Analysis and Design (grade 10 or 11)
 Level IV: Topics in Computer Science (grade 11 or 12)

Algorithmic Geometry fits neatly into Level IV, where courseware and projects are
intended to delve further into CS, explore an interdisciplinary topic, and offer project-
based learning opportunities. Looking to a future time when all US schools offer CS
education beginning in k-8, Algorithmic Geometry could become a mainstream Math-CS
capstone elective able to be offered in most high schools.

Speaking of electives, Algorithmic Geometry students will expect to receive college
credits just as they would for taking an AP course. A crucial enrollment hurdle
innovative courses like this face is obtaining accreditation. University of California has
a review process that takes a year to complete, and requires a school district as the
applicant. Getting accredited in all 50 states seems daunting.

But a journey of a thousand miles begins with one step. That first step is building a
small coalition of math-CS educators eager to cultivate next-generation 9-12 geometry
education on their home turf. A model worth emulating is the post-Sputnik BSCS
Biology curriculum modernization12, in which a small group of dedicated, tenacious,
NSF-funded educators redefined what was worth teaching and learning in their field, over
the course of a decade of summer workshops. The impact of those heady days is still
reverberating decades later in the phenomenal progress spawned in medicine, marine
science, agriculture, and environmental science.

 Seizing the Competitive Opportunity

We owe it to our young people to prepare them for the future, and equip them with the
thinking tools needed to thrive in it. Geometry teaches spatial problem-solving, a key

31

underpinning of our way of life. The revolution brought about by ubiquitous access to
computers for solving spatial problems has given us vivid 3D animation, robots that can
climb stairways, the ability to pinpoint our location anywhere on the globe, and be
transported (virtually on-screen) anywhere else. The lessons learned in the trenches of
geometric software development are about to yield an unexpected dividend –
refashioning the core constructs of formal geometry education, optimized for semi-
automated problem-solving. The spinoff from the software industry back into education:
cybergeometry.

Though few people understand the significance of this new paradigm yet, what lies ahead
potentially is a quantum leap in the problem-solving sophistication of students leaving
high school. At the heart of this new approach is streamlined theory for working in 3D,
coupled with a personal computer ready to automate everything downstream from the
front-end creative process. The “uphill” cost incurred is learning how to delegate work
to the machine – expressing your clever problem solutions in the medium of software.

For young people, gaining competence in this medium shapes their world view in the
direction of mastery over technology, counterbalancing the passive, consumerist
relationship they are thrust into by “smart” products -- iPods, DVDs, Wii. A course like
Algorithmic Geometry peels back the skin, and demystifies the innards of 3D graphics,
robotic motor coordination, GPS positioning, and machine vision. Students acquire a
feel for occupying a position of dominion over their silicon servants.

Knowledge is power - the future belongs to those who can learn it, shape it, wield it, and
transmit it. The opportunity to reinvent geometry education for the 21st century is here –
we just need to seize it.

 (The author may be contacted at pierre@AlgoGeom.org).

About the author

Pierre Bierre earned a BS in Theoretical Physics from Stony Brook University, and a
MS in Computer Science from Univ. of Colorado Boulder. He served 4 years at Stanford
Univ. Neuropsychology Lab as research software engineer, studying feline vision and
learning theory. In the field of AI, he developed a theoretical framework for experiential
sensorimotor learning, transmission of knowledge, and the totality of knowledge.

He worked as algorithm scientist for Becton Dickinson Biosciences, inventing their
Attractors system of automated immune cell analysis. He founded a robotics group at
BDB, and developed their first homegrown blood cell sample prepper, the LyseWash
Assistant. As an independent entrepreneur, he invented and prototyped the BuildExact
system for CAD-guided-laser contruction layout. As a spinoff of that effort, he invented
algorithmic geometry, authored a coursebook for it, taught a pilot course, and is seeking
grant support. He is a member of National Council of Teachers of Mathematics and
Computer Science Teachers Association. He lives in the San Francisco Bay Area.

32

Further reading:

(1) Position and Attitude Sensing by Directional Triangulation, P. Bierre, Institute of
Navigation, 2006 National Technical Meeting, Emerging Technologies Panel, Monterey
CA.

(2) Flexing the Power of Algorithmic Geometry, Pierre Bierre, Spatial Thoughtware,
2008, 182 pages, 114 illustrations

(3) Jeffreys, H. and Jeffreys, B. S. "Direction Vectors." §2.034 in Methods of
Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press,
p. 64, 1988.

(4) NSF 0733015, Cuoco, Albert, Linear Algebra and Geometry: Advanced Mathematics
for More Students

(5) Mindstorms – Children, Computers and Powerful Ideas, by Seymour Papert, Basic
Books, 1980

(6) Lifting the Curtain: The Evolution of The Geometer’s Sketchpad, Daniel Scher, The
Mathematics Educator, V10 No 1 Winter 2000

(7) Understanding Media: The Extensions of Man, Marshall McLuhan, Gingko Press
1964

(8) U.S. Commission on National Security in the 21st Century, Seeking a National
Strategy (Hart-Rudman Commission Phase II report)

(9) Principles and Standards for School Mathematics: Standards for Grades 9-12,
National Council of Teachers of Mathematics (order online: www.nctm.org)

(10) A Model Curriculum for K-12 Computer Science, Computer Science Teachers
Association (download from: www.csta.acm.org)

(11) The New Educational Imperative: Improving High School Computer Science
Education (Using worldwide research and professional experience to improve U.S.
schools), CSTA Curriculum Improvement Task Force, Feb. 2005. ACM ISBN: # 1-59593-
335-2 (download from www.csta.acm.com)

(12) The BSCS Story: A History of the Biological Sciences Curriculum Study, Laura
Engleman, Editor, 2001. (Order from www.bscs.org)

33

Appendix A Algorithmic Geometry Course Syllabus

The syllabus progresses from bottom to top, starting with automation of 2D vector
functions. Midway, the focus transitions from 2D to 3D. Topics in black involve
automation of established theory concepts. Topics in blue represent areas where
theory has been substantially revamped, largely the consequence of sidestepping
angle, and restandardizing on direction vector as the natural way to represent
spatial direction. Students explore 5 Project Challenges in grey.

Mathematicians will recognize 90% of the content as familiar. New innovations in
purple merit more explanation than there is room for here:

 • When deciding how to represent a geometric object, students are coached to
seek out the object’s point invariance predicate – a formula you can plug arbitrary
point p into, computing a decision whether or not p is included in the object.

 • Rotational inference is a new algorithm allowing 3D rotational attitude to be
inferred from a pair of directional observations, a new mathematical 3D gyro.

2D

3D

Point

Distance
Direction
Vector Dot Product

Vector Add Vector Diff Normalize
ScalarMult Length

Line

Circle Triangle

Arc
LineSeg

Tilted Rectangle

Intersection Algos
Shoulder-elbow robot arm

Triangulation

3D Vector
 Functions

Cross Product

Coordinate
Translation

Coordinate
Rotation

Angle <--> DirVec

Rotator (newX, newY)
Rotator (newZ) Line3D

Direction
Vector3D

Sphere

Circle3D
Plane

Point3D

Intersection Algos

Rotational
Inference

Point
Invariance
Predicates

Interstellar Navigation

GPS Positioning

Circumcircle
Incircle

Tangents to
Circle

Skew Lines
Directional
Triangulation Distance

Trilateration

Clockface graphics

Socket wrench caddy robot

Robot gas pump

Wireframe graphics

Computer Vision

Molecular Brownian Rotation
2D Challenges:

3D Challenges:

New / revamped
Established concepts

Polar Angles <--> DirVec3

Optical refraction
CAD pipe rendering

34

Appendix B: Walkthrough of Problem-Solving Methodology (5 steps)

This problem is tackled about 3/4 of the way through the course.

orient is the orientation of CIR (orientation of the plane it lies in)

1 Problem: solve intersection of sphere and circle3D

SPH

CIR

i1

i2

Given

SPH = [c r]
CIR = [c orient r]

Compute Results

numIntersectionPoints (0, 1, 2, ∞)
point locations i1 i2

35

The student’s sketch outlines a high-level, graphical specification for an algorithm.

2 Sketch: mental steps that solve problem

shift into
CIR’s local
coords

rotate coords
leveling CIR”

SPH
’

CIR
’

SPH
”

CIR”

SPH
”

CIR”

c/ /

i1/ /

i2/ /

visualize 2nd
circle where
x”-y” plane
cuts thru
SPH”

Solve as intersection of 2 circles!!!
(already have algo in my 2D library)

36

Translating the sketch into pseudocode requires understanding where and how
 the sketch implies computation of objects. Note: Steps 1,2,4,5 invoke past
 work.

3 Write pseudocode: outline of computational steps
int intersectionOf(SPH, CIR, /*returns*/ i1, i2) {
 // step 1: translate SPH into CIR’s local coords
 SPH’ = Translate (CIR.c, SPH)

 // step 2: rotate coords adopting CIR.orient as newZaxis
 Rotator R = RotatorForNewZAt(CIR.orient)
 SPH” = Rotate (R, SPH’)

 // step 3: specs for 2 circles (use Pythag to get missing radius)
 cir1 : c = [0 0] r = CIR.r
 cir2 : c = [SPH”.c.x SPH”.c.y] r = sqrt (SPH.r2 - SPH”.c.z2)

// step 4:compute intersection of cir1, cir2 (call from my 2D library)
 numPts = IntersectionOf(cir1, cir2, /*returns*/ i1”, i2”)

// step 5: down-transform i1” i2” back into original coords
 i1 = Untranslate(CIR.c, Unrotate(R, i1”))
 i2 = Untranslate(CIR.c, Unrotate(R, i2”))
 return numPts;

4 Put into Java source code using Eclipse editor
public static int IntersectionOf (Circle3D Cir, Sphere Sph,
 /*returns*/ Vec3 IntPt1, Vec3 IntPt2) {

//Step1,2. Translate to Cir-local coords; rotate coords so circle lies in X”-Y” plane
Sphere Sph_p = Sphere.Translate(Cir.c, Sph);
Rotator R = Rotator.RotatorForNewZAt(Cir.o);
Sphere Sph_pp = Sphere.Rotate(R, Sph_p);

//Step3. Find the intersection of Sph_pp with the X”-Y” plane (circle2_pp)
if (Math.abs(Sph_pp.c.z) > Sph_pp.r) return 0; // sphere too distant from x-y plane
Circle circle2_pp = new Circle(new Vec2(Sph_pp.c.x,Sph_pp.c.y),0);
circle2_pp.r = Math.sqrt(Sph.r*Sph.r - Sph_pp.c.z*Sph_pp.c.z); // pythagoras rules!

//Step4. Find the intersection of 2 circles in the X-Y plane (2 pts.)
Circle circle1_pp = new Circle(new Vec2(0,0), Cir.r);
Vec2 IntPt1_pp = new Vec2(); Vec2 IntPt2_pp = new Vec2();
int numPtsFound = Circle.IntersectionPtsOf (circle1_pp , circle2_pp ,
 /*returns*/ IntPt1_pp, IntPt2_pp);
if ((numPtsFound == 0) || (numPtsFound == 3)) return numPtsFound;

//Step5. Go back to 3D, unrotate and untranslate back into the problem space
Vec3 I1_pp = new Vec3(IntPt1_pp.x, IntPt1_pp.y, 0);
Vec3 I2_pp = new Vec3(IntPt2_pp.x, IntPt2_pp.y, 0);
Vec3 I1 = Vec3.Untranslate(Cir.c, Vec3.Unrotate(R, I1_pp));
Vec3 I2 = Vec3.Untranslate(Cir.c, Vec3.Unrotate(R, I2_pp));

//copy out
IntPt1.copyFrom(I1); IntPt2.copyFrom(I2);
return numPtsFound;
}

37

 Solution step Typical time expended (min.)

 1 Problem definition 5
 2 Sketch out a solution 15

 3 Pseudocode algo 10
 4 Java implementation 20
 5 Graphical algo testing 15
--
 Total problem-solving time 65 min.

The intersection of sphere + circle3D is now solved for good, and may be called
upon to solve higher-level challenges. Examples where this algo is useful:

 • intersection points of 3 overlapping spheres (GPS positioning)

 • 3D CAD pipe rendering with moving viewer (drawing cylindrical outlines)

5 Test algo in graphics workspace .
.

