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Abstract 

 
Math educators and policymakers face an epochal decision – whether the advanced math 
skills that undergird high tech society will be passed along to the few, or to the many.   
The answer is a harbinger of our nation’s future economic wellbeing and global security. 

 
Geometric problem solving has undergone a quiet revolution over the past generation, in 
the hands of people who solve spatial problems by writing software.   The new geometry 
is algorithmic.   The theory foundation has morphed significantly for ease in thinking and 
writing algorithms.   This paradigm shift is poised to impact 9-12 math education, with 
the piloting of algorithmic geometry courseware designed for 11-12 graders.   Students 
learn explicitly how to represent geometric objects and properties in software.  Each 
student writes their own geometry software library in Java, operationalizing and 
automating their problem-solving knowledge as they acquire it.   Problem challenges are 
explored in STEM topics ranging from robotics to GPS to molecular mechanics.  
 
Angles and slope are passed over as computationally inferior, supplanted by the more 
elegant direction vector (a unit vector representing spatial direction).   As a consequence 
of sidestepping angle, trigonometry is receding in importance.   Coordinate rotations are 
specified in terms of a new set of axes (called a rotator).   In 3D, direction vectors and 
rotators alleviate the confusion associated with polar angles and roll-pitch-yaw angle 
combinations.   These aren’t mere preferences – direction-vector-based representations 
are arguably superior both mentally and computationally to angular representations.  This 
white paper explains why 21st century students deserve to be taught this new approach.    
 
Algorithmic geometry also introduces math students to the power of problem-solving 
automation.   They learn the discipline of thinking through fully-generalized 
representations and problem solutions (ones able to handle all cases).   The payoff is that 
previous solutions may be reused in any context, opening the door to layered problem 
solving.   Layering and reuse make it possible during a 145-hour course for students to 
ascend to 3D challenges in robot arm motor coordination, wireframe graphics, GPS 
positioning, molecular mechanics, optics, computer vision, and interstellar navigation.    
 
A two-year public school pilot (n=28 students) was undertaken in 2010-12.   The results 
of these courses are presented.  Examples of instructional materials are given.   
Preliminary answers are offered on how many students can learn to do geometry this 
way, what level of teaching resources are required, and how best to teach teachers.  
Pending grant support, development opportunities are expected to surface in the next few 
years.  The purpose of this white paper is to introduce 9-12 math-CS educators to the 
basics of the algorithmic geometry approach, and begin building an alliance of 
participating high schools. 
 

             Geometry as a Human-Machine Partnership 
 
What is Algorithmic Geometry?   Where does it come from?   Why is it emerging now?  
How does it differ from analytic geometry?  How does it fit into existing curricula?  
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The starting point is the assumption that basic geometry constructs be well suited to 
thinking and writing software algorithms.   This is a very recent concept, one bound to 
reshape the set of thinking tools considered central to solving spatial problems. 
 
Our rich geometric heritage, developed and handed down over millennia, builds in the 
unquestioned assumption of human computation.  With the advent of software 
technology, a more powerful set of geometric thinking tools becomes possible.    
 
The driving question is:  How relevant are traditional, pre-computational geometry 
concepts when doing geometry in partnership with software?   This question boils down 
to how nimbly representations originally optimized for brains translate over into 
software.  With two generations of experience, answers are coming into focus.   These 
answers are nuanced. 
 
Points and distances translate easily into software.  Accordingly, in our first lab, the 
student implements 2D Cartesian point vectors and Pythagoras’ distance formula.    
 
At ease with these familiar concepts, the student learns how to implement them in Java.   
Though language details take some explaining, the overall gist is fairly intuitive, and 
students can absorb much through mimicry.   
 
To represent a Cartesian 2D point as a vector quantity, first, a template for objects of this 
class is created, saying what information is needed to represent any 2D vector:  
 
public class Vec2 {   
 double x;      
 double y; 
} 
 
Double precision real variables will house the x and y values (accurate to 16 decimal 
digits).   The distance unit 1.0 represents one pixel width on the screen. 
 
Then, students create and name instances of 2D points, and call a built-in function to 
draw them on the screen: 
 
 Vec2 p1 = new Vec2(100, 200);  // inits p1 to [100, 200] 
 p1.draw();                     // draws point on screen    
 
Near the end of the first lab session, students will have absorbed enough rudimentary 
Java to write their own Pythagorean distance function: 
 

public static double distance (Vec2 p1, Vec2 p2) { 
  double dx = p2.x – p1.x; 
  double dy = p2.y – p1.y; 
  double dist = Math.sqrt(dx*dx + dy*dy); 

          return dist; 
  } 
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Java is well suited to programming mouse-interactive 2D graphics, and there is probably 
no more engaging, rigorous and fun way to learn 2D algorithmic geometry.   Half an hour 
into the course, the student is putting dots on the screen, and learning how to make them 
mouse-editable.   This progresses quickly to mouse-editable line segments, leading up to 
the problem of programming a mouse-draggable triangle. 
 
The challenge given is to move the triangle to a new location by clicking and dragging 
near its center of gravity.   That is, to write a program supporting this GUI behavior.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Making the Departure from Angle 
 
After points and distance, the third most basic concept in geometry is direction.  In 
classical plane geometry, angle and slope serve this purpose.   Neither angle nor slope is 
ideally suited to computation.  The ancients can hardly be faulted for this oversight. 
 
Computers do not “think” the same way as we humans.   Back in the ‘80s, I was a 
software engineer at Stanford Univ. Neuropsychology Lab, studying feline vision.  One 
day it dawned to me that, as a consequence of representing edge orientation with angle θ, 
I was having to write exception code.   In the computer, θ is just a number, and the first 
letdown is that > 6.2834, the edge directions represented begin to repeat over again.  
 
The computer does not handle ambiguity skillfully as we do.   It’s preferable to have a 
1:1 relationship between the representation and the thing it stands for.   As a band-aid for 
θ, we can insist that directions be represented within the bounded range: 
 
                                               0  ≤  θ  <  2π 
 
After every addition and subtraction of angles, the result value has to be inspected and, if 
necessary, brought back into standard range.   But another problem is looming.... 

The elegance of using vector addition to 
translate the vertices becomes apparent 
(blue arrows).   Calling upon a method 
they’ve written that adds two vectors, 
 
  
   Vec2 c = Vec2.add(a,b); 
  
 
the student is thenceforth freed up from 
having to deal with the minutia of scalars 
x and y.  She is able to think of a point as 
a unitary object, and operate on it as 
such.   She processes points and object 
motion using vector operations.   

y 

x 

p1 

p2 
p3 
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we are forced to swallow a discontinuity at 2π.   This will complicate deciding when two 
directions are almost equal.   We cannot merely subtract their values.   
 
Software writing is better off when spatial direction can be represented with the property 
of continuity....i.e., nearby directions can always be assumed to have nearby values.  
 
After Stanford, it took me another 15 years to clearly articulate the problem with using 
angle computationally to represent direction:  
 
   
 
 
  
The solution is to use two numbers.....to use direction vectors instead of angles. 
 
Any direction in 2D space can be represented as a vector of length = 1, where the tail is at 
the origin and the head falls on the unit circle.   Here are examples of two direction 
vectors.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Direction vectors are an ideal choice computationally for three reasons: 
 
1:1 Representation:  Each possible direction has one and only one direction vector.  
 
Continuity:  The value of direction vectors change very smoothly going around the unit 
circle…there are no discontinuities anywhere.    

There is not quite enough information capacity in a single scalar number to 
smoothly and unambiguously represent pointing direction in 2D space. 

  

y 

x 

unit 
circle 

d1 

d2 

[ 1  1 ] 

[ -1  -1 ] 

[ .707  .707 ] 

[ .894  -.447 ] 

Direction vectors (used in place of angles) 
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Scalability:  When we get to 3D, the same concept can be applied – instead of a unit 
circle, 3D direction vectors will fall on the unit sphere. 
 
These representational properties streamline the thought process when creating 
algorithms.  Direction vectors give us a means of representing spatial direction free of 
messy exceptions.   Once you get used to working with direction vectors, the mental 
process becomes similarly streamlined.   Algorithmic geometry is multimedia, straddling 
the brain, paper and pencil drawing, writing source code, and the computer running it 
producing graphic results.  Compatibility across all four media is the major consideration 
shaping the theory and methodology. 
 
Direction vectors are too hard to calculate in your head (even with the help of paper and 
pencil).  This explains why they receive perfunctory mention in high school texts (if at 
all).   For instance, the direction from point p1 to p2 is: 
 
    dp1p2  =  (p2 – p1)norm  = [ (p2.x-p1.x)/ dist(p1, p2)     (p2.y-p1.y) / dist(p1, p2)  ]  
 
Angles are much better suited to brain computation.   But direction vectors are superior 
when the computer is crunching the numbers.   They are a nimble fix to the 
overcompression of information in angle, and require no more effort than to once and for 
all write source code to compute the direction from p1 to p2: 
 
public DirVec DirVecOf(Vec2 p1, Vec2 p2)  {//p1 p2 
     if  (identical(p1, p2)) return null; 
     return new DirVec(normalize(diff(p2, p1))); 
 
Don’t expect the elegance of this approach to jump out of the page and seduce you on the 
spot.   It takes some experience applying direction vectors algorithmically before your 
allegiance to angle softens up.   Where we want to help you get to (and your US students) 
is a new level of representational sophistication where angles and direction vectors 
coexist along a human-machine continuum, each playing to their strengths, and avoiding 
their respective limitations.  A student straddles this continuum by writing conversion 
functions for going back and forth between θ radians and direction vector d = [ x  y ].   
 

Reinventing the 2D line equation 
 
The next problem the student is confronted with is referred to in computer graphics as 
line hit testing -- Write an algorithm that decides when the mouse is being clicked on a 
visible line on the screen.   The algo must be written to work with any possible line.  
 
When drawing a line segment, the system’s graphics software takes care of filling in all 
the pixels between the endpoints.   Line hit testing is an input processing problem, and 
requires the student’s program know something about where the line is.   How shall a line 
be represented?  For simplicity, we consider the line to extend infinitely.   The following 
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question provides the starting point for thinking about how best to represent lines (and 
other geometric objects): 
 

What is invariant numerically about the points on the line? 
 

In our formative years, we’re taught that a straight line is represented mathematically as 
the set of points [ x  y ] satisfying the equation: 
 
                         y = m x + b 
 
where m is the slope (dy/dx), and b is the y-intercept.   What’s wrong with this theory? 
 
The problem is that it cannot represent vertical lines.   For such lines, the above equation 
seriously bombs, first because calculating the slope will force a divide by zero, which 
generates a computer error.   Second, where does a vertical line intercept the y-axis?   
 
The slope-intercept formula isn’t a problem for humans doing pre-computational, paper 
and pencil geometry because we are good linguistic exception handlers, and adapt to 
vertical lines as a special case, by writing: 
 
                     x = 7  
 
From an algorithmic standpoint, changing the form of representation to handle special 
cases is a sign that the choice for representation is not general enough.   The ideal is to 
represent all cases in the same manner with no exceptions.    
 
The problem with slope (dy/dx) is that a single scalar number does not have quite enough 
information capacity to comfortably represent all possible line orientations.   A similar 
problem arose trying to shoehorn 2D direction into scalar angle θ radians.  In 
computation, the resulting singularities posit ugly exceptions that are better avoided. 
 
The remedy is to allow the use of more than one number in representing line tilt.  We use 
a direction vector to solve this problem.   

 
 
 
 
 
 
 
 
As can be seen, dx and dy are still the key pieces of information needed to compute line 
orientation.  The faux pas we avoid is collapsing dx and dy into single number dy/dx.  
Division destroys information.  ∞ works fine for brains, but in the computer, there is no 
way to represent such an indistinct quantity.  ∞ just doesn’t compute.  This is one of the 
adjustments we make in the switch to algorithmic math. 

o = [ dy  -dx ]norm 

o We use the direction perpendicular to the line 
to represent its orientation o: 
 
By allocating two real numbers to represent 
line orientation, the exception for vertical lines 
is eliminated, and all line orientations can be 
represented in a uniform manner. 
  

Line orientation o  (replaces slope) 
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Next, the student learns about the dot product of two vectors.  We introduce the dot 
product non-traditionally, by studying the dot product of a direction vector and an 
arbitrary point: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y 

x 
o 

l 

L 

p • o == l 

Equipped with line orientation 
and the dot product, we may 
proceed to the vector-based 
invariance formula for points on 
an infinite straight line.   
 
If o is the line’s orientation, and 
l is its signed distance from the 
origin along direction o, then 
for every point p on line L: 
 

              p • o == l 
 
Graphically, think of line L’s 
orientation o as an alternative x-
axis.   Every point on line L 
projects onto the same 

coordinate (l )  along this new 

axis direction o.  

We let direction vector 
d play the role of an 
alternative x-axis. 
 
 
The dot product  
 
        p • d 
 
serves to compute the 
new coordinate of any 
point p along this new 
axis d (colored 
distances indicate new 
coordinate lengths). 

dot product 
  
p • d =   
 
p.x * d.x   +   p.y * d.y 

Invariance of points on a line 
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This vector line predicate is a close cousin to the standard form (and Hessian), but 
surpasses any purely algebraic formulation in that its numeric features have clear spatial 
meanings that the student can latch onto.   The two features needed to represent an 

infinite 2D line are its orientation o, and its signed distance from the origin l .  This leads 
to the following software representation: 
 
public class Line {   
 DirVec o;  // orientation (perp. direction)     
 double l;   // signed distance from origin (along o) 
} 
 
Using this representation, the line hit testing problem may be solved in a few lines of 

code.  The scalar result p • o - l gives the signed proximity of a point to a line (how close 
is it, and on which side it falls): 
 
public double signedProximity (Line L, Vec2 p) { 
     return dotProd(p, L.o) – L.l; 
} 
 
Hit testing the mouse-click for proximity to a line falls out naturally at this point.   The 
student merely needs to pick a reasonable pixel distance forgiving pecking inaccuracy, 
and then decide if abs(signed proximity(Line, mousePos)) falls within that many pixels. 
 

Coordinate Rotation using newXaxis instead of angle θ  
 
Applying the 2D vector line predicate, a student begins to appreciate the power of the dot 
product to transform coordinates for an arbitrary new axis direction.   This sets the stage 
for introducing generalized 2D coordinate rotation, specified by newXaxis:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 

y 

newYaxis 
p1 

p2 

p3 

newXaxis 

Coordinate rotation 
specified by newXaxis 
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Students should already be familiar with coordinate rotation as the process of adopting a 
new coordinate system, transforming points into new coordinates.  In algorithmic 
geometry, the “amount” of rotation is specified by simply saying where you want the new 
x-axis to fall.   You specify newXaxis as a direction vector.   The advantage is that a new 
axis direction may be obtained from points without invoking angles and trig.  The inverse 
transcendentals arccos, arcsin, arctan are messy computationally (mathematically, they 
are not even functions).  Direction vectors are always well-behaved computationally. 
 
Having already automated the dot product function, the student is able to write a 
workhorse method to rotate point p for newXaxis.    This method is highly streamlined 
compared to traditional coordinate rotation specified via angle (and requiring trig). 
 
public Vec2 rotate (DirVec newXaxis,  Vec2 p )  { 
   DirVec newYaxis = rot90CCW(newXaxis); 
   return new Vec2(dotProd(p, newXaxis), dotProd(p, newYaxis)); 
} 
 
Another way to think of 2D point rotation working, using matrix operations, is to 
conceive of a 2x2 matrix R, having as its column vectors the new x and y axis directions: 

  R =  [newXaxis    newYaxis ] 
 
and implementing point rotation as a vector p dotted with R: 
 
  p’ = p • R   
 
The role that R plays in software invites us to refer to such an object as a rotator.   This 
concept will become very potent when the student segues into 3D.   At that point, she will 
arrive prepared mentally to rapidly accept the use of 3D rotators.   These rotators make 
mental mincemeat out of working with freely rotating bodies.  They represent a quantum 
leap in mental clarity and elegance over roll-pitch-yaw angles, while putting to bed all 
the computational and representational hassles associated with the latter. 
 
At this point in the course, the 2D representational foundation is built, and attention turns 
to solving the basic intersection algorithms involving lines and circles: 
 
  
 
 
 
 
 
 
Typically, these intersection problems will each require algorithms stringing together 3-5 
mental steps and 5-15 new lines of code.   Considering that the algo must handle all 
possible cases, a degree of mental parsimony is being harnessed in these solutions. 

2D intersection problems solved algorithmically 
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Let’s look at the intersection of two lines as an example.   Problem statements are 
graphical.   Students have to process the lines using their vectorized representations. 
 
Given:  

L1 = [ o1  l 1 ]  

L2 = [ o2  l 2 ] 
 
Solve for: i  
 
 
 
 
 
 
 
 
 
 
 
 
Students are coached to think of a special case that would be easier to solve.   Wouldn’t it 
be easier to solve if one line were parallel to an axis?   Coordinate rotation can be used to 
morph any problem into this special case.   Let’s pick one of the lines, and rotate 
coordinates under its influence to make that happen....how about L2?   What if we use 
L2’s orientation to define the newXaxis: 
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Rotating coordinates under the influence of L2 makes L2’ stand perfectly vertical. 
 
Rotation does not change a line’s signed distance from the origin.   So, in the rotated 

space, the point i’ lies on the vertical line having x’ coordinate l 2: 
 

                                                    i’.x =  l 2.   
 
We rotate L1  L1’ computationally to make use of its information.   Its distance from 
the origin is preserved, so all we need to do is rotate its orientation: 
 
                        o1‘  =  rotate (newXaxis, o1 ) =  rotate (o2, o1 ) 
 
All we are missing now is i’.y.   The line equation of L1’, given an x’ coordinate, 
determines a y’ value.  A little algebra solves for y’: 
 
 

[ l 2   i’.y ]   •  o1’     = l 1                        (line equation where i’.x = l 2) 
 

l 2    o1’.x     +    i’.y   o1’.y     = l 1         (expand the dot product) 

y
’ 

x
’ 

i’ 

p‘ •  o1’ == l1 l2 

L2/ 

L1/ 

Line intersection problem “rotated” into easier special case 
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            i’.y   =   (l 1   - l 2  o1’.x)  /  o1’.y           (rearrange, solve for i’.y) 
We now have both coordinates for intersection point i’.   After that, we just need to 
unrotate i’  i so that the result comes out in original coordinates.   A sibling function to 
rotate called unrotate will exactly undo the transform when handed the same 
value of newXaxis. 
 
The mental steps captured in the sketches and algebra serve as the specification for the 
source code algorithm.   Each student translates their mental steps and sketch into Java: 
 
public static Vec2 IntersectPtOf(Line L1, Line L2) {  
  if (parallel(L1,L2)) return null; 
 
  // rotate coords so that L2’ is vertical   
  DirVec newXaxis = L2.o; 
  DirVec L1_o_prime = Vec2.rotate(newXaxis, L1.o); 
   
  // find i_p, the intersect pt in rotated coords 
  Vec2 i_p = new Vec2 (); 
  i_p.x = L2.l; 
  i_p.y = ( L1.l - L2.l * L1_o_prime.x) / L1_o_prime.y; 
   
  // unrotate i_p back to original coords 
  Vec2 i = Vec2.unrotate(newXaxis, i_p); 
  return i; 
  } 
 
Notice that the degenerate case is handled up front.  A null result signifies no 
intersection.   The student solves parallel(L1, L2) as a separate algorithm. 
 
The final step is to test-run 2D line-intersection using on-screen graphics.   A pair of 
lineSegs whose endpoints are mouse-editable serves as the testbed.   The student 
programs in a small circle to highlight her algo’s computed intersection point.    
 
 
 
 
 
 
 
 
 
 
 

As the student drags one lineSeg 
around, the circle tracks with the 
“X” (unless there is a bug).    
 
Interactive graphics testing throws 
dozens of test cases at the algorithm 
per second.   It is a very efficient 
way for the student to become 
confident a general, automated 
solution has been achieved. 

Test of line intersection algorithm 
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The intersection of two circles is approached in a similar fashion, using both coordinate 
translation and rotation to massage the problem toward a friendly special case.   The 
finished algorithm is a gateway result, opening the door to solving a whole host of 
advanced problems in robotics, graphics and navigation.   There is a palpable sense of 
empowerment felt by the student as they conquer this problem, aware that they are no 
longer hamstrung by the idealizing assumptions that limit paper and pencil geometry. The 
intersection-of-two-circles problem crosses a threshold into a new realm of cybermath. 
 
The methodology relies heavily on visual thinking, and understanding how visual 
manipulations correlate to vector processing operations.   Ability to draw quality sketches 
is a key success factor.   This is because the “aha” moment in algorithmic geometry is 
usually harvested in paper and pencil mode.  Coding the algorithm is all downhill. 
 
Each student is required to keep a notebook of sketches.   These comprise graphic 
specifications of the algorithms, and are the key to understanding how the lines of code 
work to solve the problem.   They trace the thought process leading up to coding. 
 
At the midpoint of the course, the student will have written a 2D vector geometry library 
comprising about 8 classes, 120 algorithms and 750 lines of code, covering points, 
distance, directions, lines, lineSegs, triangles, circles, arcs, translations and rotations. 
 
 
  A Problem Challenge in Robot Motor Coordination 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here is a robotics challenge students may elect to 
solve, applying their new understanding of 2D: 
 
The painting hand at h is maneuvered by the 
shoulder motor at sh and elbow motor at el.   
The upper-arm length is r1, and the forearm 
length is r2.   You are given the coordinates of 
sh. 
 
For any specified point p the paint hand h can 
reach, what shoulder and elbow angles 

[ θsh  θel ] should be assumed? 
 
The elbow motor angle is with respect to the 
upper arm on which it is mounted. The home 
positions (θ == 0 ) of the motors are shown in 
the folded-up arm:  
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Solving this problem involves 4 mental steps and about 10 lines of new code.   The “aha” 
moment comes when the student sees in their sketch that the elbow is constrained by 
fixed distances from 2 points ( [ sh  r1 ] , [ h  r2 ] ).   Therefore, el falls out from the 
intersection of two circles.   That algorithm is already a done deal....off-the-shelf!  
 
Once el is obtained, direction dsh el can be computed, then converted to shoulder motor 
angle θsh.  The student takes for granted his lower-level functions already written. 
 
The elbow motor angle requires one additional step:  After delh is computed, it has to be 
rotated into the upper arm’s moving frame-of-reference (defining 0.0 radians for the 
elbow motor).  In the folded up arm, we can see that this newXaxis always points from 
the elbow back toward the shoulder  ( del sh ).  Directions are rotated just like points:  
 

  θel  =  angleOf( rotate (del sh , delh )) 
 
This problem is typical of the degree-of-difficulty a student can manage after a half-
semester of algorithmic geometry.   To the uninitiated, this may seem audacious and 
unrealistically advanced for high school juniors and seniors.   But if you interview the 
initial students who’ve gone through the pilot, they explain the success of the approach in 
these terms: 
 
• the geometry concepts are small in number, elegant, powerful, and designed to fit 
together like a jigsaw puzzle.  
 
• the Java is a little strange initially, but is picked up by osmosis in the first 2 weeks 
 
• theory concepts are immediately put into practice hands-on writing interactive graphics  
 
• the algorithms written pile on synergistically...in every algo, we leverage past success, 
always moving to a higher level – the automation of math problem solving is way cool! 
 
 

Being Swept Up into 3D 
 
The point of spending 8 weeks learning 2D vector software geometry is twofold.  The 
student is being prepared intellectually for an easy glide up into 3D.  In addition, the 
student’s 2D library will serve as a workhorse for solving 3D problems. 
 
In the pilot, the transition was surprisingly spontaneous.  As soon as I let down the 
gauntlet to start into 3D, my students made a copies of their Vec2 class library, named it 
Vec3, and with no prompting, rewrote every vector function to work with [ x  y  z ]. They 
surmised how a 3D direction vector is defined and computed.  The only help needed on 
DirVec3 involved the converter from polar angle [ φ  θ ]  d =  [ x  y  z  ].  With some 
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coaching, their 2D converter [ θ ]  d = [ x  y ] did most of the heavy lifting. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As motivation for the cross product, the student is challenged to extend the concept of 
coordinate rotation to 3D. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 

z 

y 

o 

l 

The first structured object taken on in 
3D is the plane. 
 
What is invariant about the points on 
a plane? 
 
The analogy to the 2D line is 
unmistakable.  The plane has a 
directional feature (its tilt), and a 
positional feature (its signed distance 
from the origin). 
 
We can represent it using the same 
predicate as the 2D line: 
 

             p • o == l 
 
It will take introduction of cross 
product theory before being able to 
compute a plane from 3 points. 
 

x 

z 

y 

newZaxis 
newXaxis 

newYaxis Just as in 2D, we can specify a 
general-purpose coordinate 
rotation by supplying a valid 
new set of axes. 
 
Students can see their way to 
rotating p  p’.  There is one 
more dot product to be 
computed for the z-coord. 
 
What is not obvious is how to 
compute such an axis set (what 
we in software call a rotator, 
the operational equivalent of an 
orthogonal matrix). 

                         p • o == l  
 
Invariance of points p on a plane 
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                                                               Rotator  R = [ newXaxis  newYaxis  newZaxis  ]
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For this, the student is shown the cross product of two direction vectors a  b, and how 
(a x b)norm computes their mutual orthogonal direction: 
 
 
 
 
 
 
 
 
 
The cross product is the key vector function needed to write algos that produce rotators 
on demand, for example: 
 
 Rotator R1 = RotatorForNewXandYAt(newXaxis, newYaxis); 
 
 Rotator R2 = RotatorForNewZAt(newZaxis); 
  
In the latter case, newZaxis underspecifies the rotator, but this function is quite useful 
nonetheless in cases where we are willing to let the software pick newXaxis and 
newYaxis arbitrarily. 
 
                               Point Invariance Predicate of a 3D line 
 
What is invariant about all the points p on an infinite 3D line?   The conventional 
approach (web and textbooks) springs from point pair p1  p2, and appeals to a linear 
combination of them parameterized by t: 
 
       p == p1 + t (p2 – p1) 
 
A point invariance predicate is a formula you can plug arbitrary point p into, deciding if 
p is included in the object.   The above formula fails as a predicate!  Why?  The value of t 
is unknown.  To compute whether p is on given line [ p1, p2 ], we’d have to also be 
given t.  This representation is what a computer scientist would call a weaker generative 
form....it suffices to generate points on the object, given values for t: 
  

   p = p1 + t (p2 – p1) 
 
but lacks the strength of an invariance predicate.   The compare (==) and assignment (=) 
operators above mean totally different things in computer science.   Precomputational 
geometry makes no such distinction.   Predicates calculate true-false decisions, such as 
whether an arbitrary point p is included in an object.  
 
In algorithmic geometry, when deciding how best to represent an object in software, 
students are coached to seek out the object’s point invariance predicate, a formula that 
can compute whether arbitrary point p is included in the object. 

a 

b a x b 
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How can we state the invariance of points on a 3D line in such predicate form? 
 
The invariance of all points on line L is as follows:  If coordinates are rotated in such a 
way that newZaxis is chosen parallel to the line, then in the new coordinate system, the 
line will stand perfectly vertical.  All points along it will share an invariant [ x’ y’ ] value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We represent an infinite 3D line as a rotator R and an invariant [x’ y’]. 
 
The invariance of points on L can now be captured.   For any point p on L,  
 
 
 rotate (R , p) ==  [ x’ y’ -- ]              3D line predicate        
 
 
How can R and invariant [x’ y’] be computed?   Two points are sufficient to determine a 
line.  Assume we are given p1 and p2  (p1 != p2).   (!= means “not equal to”) 
 
First, we calculate the direction dL going from p1  p2.  This is just the normalized 
vector difference p2 – p1: 
 
   dL = ( p2 – p1 ) norm 
 
R wants to specify a rotation where this direction dL defines the newZaxis.  This is the 
coordinate rotation that will make the line stand perfectly vertical (aligned to z’ axis): 
 
  Rotator ZAlignRotator = RotatorForNewZAt(dL); 
 
Then, rotate either given point (p1or p2) by this amount to calculate the invariant [x’ y’ ]: 
 
     [ x’ y’ -- ] = rotate (ZAlignRotator, p1); 

x 

z 

y 

L 

newZaxis 

z/ L/ 

x/ 

y/ 

[ x/ y/ ] 

   R 
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The “constants” in the object’s point invariance predicate pin down all the information 
needed to represent the object: 
 
 L =  [ ZAlignRotator           invariant [ x’ y’  ]  ]      (representation of 3D infinite line) 
 
In Java: 
 
public class Line3D  { 
    Rotator ZAlignRotator;  
    Vec3    invariantXY; 
} 
 
The advantage of this approach becomes apparent once you begin tackling problems 
involving 3D lines.  For instance, on our current final exam, students are asked to design 
an algorithm solving for the intersection of arbitrary sphere SPH and line L. 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
A straightforward solution awaits if you rotate coordinates making the line stand vertical.  
The rotator that does so comes “free” in the line’s representation.   Rotating the sphere 
merely entails rotating its center c  c’.   You should be able to solve the special case on 
the right.   The [ x’ y’ ] coordinates of the intersection points are the invariantXY feature 
of line L.  Their z’ coordinates fall out using c’ and Pythagoras applied to the red triangle.   
Unrotate the solution points by ZAlignRotator to finish up. 
 
Generating points on a 3D line using a parameterization variable is no problem.  In the 
rotated space where the line stands vertical, the z’ coordinate parameterizes all the points 
along the line...you just pick a z’, tack it onto invariant [ x’ y’ ] and unrotate: 
 
public generatePoint (z_prime) { 
   return unrotate (ZAlignRotator,  
                    new Vec3 (invariantXY.x,invariantXY.y, z_prime)); 
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} 
The 3D object intersections students solve algorithmically include the following: 
 
Line-Plane  Plane-Plane  3-Plane  Sphere-Sphere 
 
Sphere-Circle3D 3-Sphere   Sphere-Plane 
 
3-Sphere intersection forms the basis for GPS positioning.  When students master this 
algorithm toward the end of the course, there is a “heady” feeling analogous to physics 
students of the ‘50s having teased apart how a transistor works, or a century earlier, 
Victorian kids having figured out how basic electricity works.    
 
The rarified air these kids breathe has much to do with the fact that they know they are 
already surpassing at a young age what very few older adults can understand.   Such 
highly cerebral, transcendent experiences are exactly what is needed to propel young 
people to become scientists and inventors.     
 
A menu of 3D problem challenges (mini-projects) awaits the student the last 2 weeks of 
the course.   Students may elect 2 topics from the following menu (which is expanding 
every year): 
 
     3D wireframe graphics   Robotic gas pump attendant 
 
     CAD pipe rendering graphics  Optical reflection and refraction 
 
     Computer Vision    Molecular Brownian Rotation 
 
     Interstellar Navigation (by camera star tracking) 
 
In each challenge, the student solves an advanced 3D geometry problem that opens the 
door to competence in an area of science-engineering.  For example, for molecular 
biochemistry modeling, you are asked to devise an algorithm that confers a perfectly 
random 3D rotational orientation to a virtual molecule.   Or, in computer vision, infer the 
location of a 3D point by acquiring it in images taken from two different vantage points.   
Or, in interstellar navigation, deduce a spacecraft’s 3D attitude by sighting two very 
distant reference objects (requiring application of rotational inference1). 
 
These challenges can typically be solved in less than 20 lines of new code, but may 
require the better part of an hour of trial and error in paper and pencil mode to solve the 
key geometry puzzle.   When the solution finally runs on the student’s computer, the 
program is exercising a large portion of the student’s geometry library going back to the 
beginning lab.   The edifice of one’s mental effort over dozens of hours is somehow 
compacted into a split second of focused brilliance, vanquishing a college-level (or 
advanced-degree) problem.   Students expectably come away with a surge of confidence 
about their ability as problem-solvers.    
 



22 

 
For example, the interstellar navigation problem is a PhD-level problem (judging by the 
few space scientists who have published papers addressing it).  Students who can 
problem-solve at this level before entering college are going to see themselves as math 
whizzes.   This is the type of learning experience we educators should be shooting for.    
 
   Results of Initial Proof-of-Concept Course 
 
The first teenagers to study algorithmic geometry completed a proof-of-concept pilot the 
summer of 2005.   The initial testbed involved two students freshly minted from high 
school, and in recent possession of their graduation laptop gift.   The purpose of the 9-
week, 72-hour course was to obtain an initial reality check on the feasibility of imparting 
all the novel aspects of pedagogy, primarily the revised theory foundation and the uphill 
of some computer programming. 
 
The syllabus (see Appendix A) was based on a draft version of Flexing the Power of 
Algorithmic Geometry2.   The software toolset was based on CodeWarrior/Java (we’ve 
since switched to Eclipse/Java).   Hand-drawn posters were prepared for theory lecture 
graphics.   We rotated the class meeting amongst our three homes, with three classes a 
week totaling 8 hours.   There was no homework, a norm we have adopted in order that 
students benefit from working on problems in an environment with full technical support. 
 
The class rhythm consists of a short theory lecture-discussion followed immediately by a 
programming lab exercise where students individually write code implementing the 
theory, and then test their solutions for correctness by means of interactive graphics. 
 
Appendix B presents a walkthrough of a complete problem encountered 3/4 way through 
the course – the intersection of a sphere and 3D circle. 
 
One student had never programmed before, and the other had one year of Java.  The two 
students are profiled briefly here: 
 
“David W.”  Finished grade 12,  SAT-M = 670,  received C in geometry, no 
programming experience, team leader 2 years in FIRST robotics competition.  
Currently: Engineering junior at Purdue. 
 
”Cliff B.”  Finished grade 12,  SAT-M = 720,  Logo Turtle Graphics (k-5), 1-year 
AP CS Java. Currently: junior in Mechanical Engineering at Cal Poly SLO. 
 
Toward the end of the course, both solved the problem of GPS positioning (intersection 
points of 3 overlapping spheres), and interstellar navigation by star tracking (rotational 
inference, directional triangulation).  The source code libraries written by these two 
students demonstrate a proficiency that would be judged extraordinary at the pre-college 
level.   Inasmuch as the students wrote their Java code without prompting, it is 
inescapable that the student possesses a rigorous, hands-on understanding of introductory 
vector math. 
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                           How is it Different? 
 
Let’s now try to summarize, and in doing so answer the seminal questions about 
algorithmic geometry posed at the outset.  What is it?  Where does it come from? 
Why is it emerging now?  How is it different?  And, where does it fit in? 
 
It is a modern style of geometry undertaken as a close-knit partnership between human 
and computer.   Using software programming, the person translates paper and pencil 
sketched solutions into working algorithms that crank out numerical answers, handling all 
possible cases of input.   Previously solved problems are fully automated, and sit at the 
ready to be called into action to assist in solving the next problem.  This pattern of 
solution reuse leads to highly layered, highly leveraged activity, in which the aggregate 
of one’s past mental effort is brought to bear in an instant solving a daunting problem, but 
the steps leading up to it involve ordinary mental effort focused on bite-sized chunks.   
The synergy going on in this partnership is a blend of mathematics, computer science/AI 
and cognitive science/psychology.   You could call it applied cybernetics. 
 
The thoughtware vested in the partnership straddles grey matter, sketches on paper, 
source code, and the computer behavior while exercising it.  The geometry becomes 
operational in silicon, and springs to life in vivid color on the screen.  
 
The foundational concepts are steeped in the classical Greek distance formulas, Cartesian 
points, and direction vectors (popularized by mathematical physicists3).   While points 
and distances are represented in software the same way as has been done for 50 years, 
slope and angle are more recently supplanted by direction vectors, which stand up better 
to computer-based representation.   Accordingly, all directional properties, object 
features, and operations are restandardized using direction vectors.   Coordinate rotation 
is done using rotators, which specify a set of new axes (basis vectors).   Rotators rotate 
points and directions by dot product projection onto new axes.   Angle is demoted in 
importance, and with it, trigonometry.   3D rotators streamline and simplify coordinate 
rotations that previously had to be represented using combination roll-pitch-yaw angles. 
The singularity, ambiguity and asymmetry headaches inherent in representing freeform 
solid-body rotation with a set of angles are burdens no 21st century student will miss. 
 
Object representations are arrived at by asking what is invariant about all the points on an 
object, and striving to capture the answer in a computable point invariance predicate.   
This approach points the way to streamlined representation of a 3D line, which embeds 
an Z-axis-alignment rotator.  Problems involving lines in 3D (such as the intersection of 
two planes) are vastly simplified, as they now can be solved in the rotated space where 
the line stands vertical.   This representation offers a major simplification over the 
traditional linear algebra representation, based on p = p0 + t (p1 – p0).  
 
Most importantly, the degree-of-difficulty of problems that may be solved is elevated 
beyond what most would think possible for high school students.   An example is solving 
for the 2 intersection points of 3 overlapping spheres, the basis for GPS positioning.  A 
more sophisticated example is interstellar navigation, in which the spacecraft can assume 
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any arbitrary 3D attitude.   Problems of this type are notoriously daunting using angles.  
Using a rotator instead to represent craft attitude simplifies things, and prepares the 
student to learn how to infer the craft’s attitude by observing two remote galaxies, a 
technique called rotational inference.   Once attitude is determined, the craft’s location 
may be solved by sighting 3 nearby stars, and applying directional triangulation (the 
intersection of 3 planes).   Judging by the aerospace literature, star-tracking navigation is 
a PhD-level problem.   However, near the end of their first algorithmic geometry course, 
a high-school student will have amassed the know-how and software library to solve 
interstellar navigation geometry in 3 mental steps, and 11 additional lines of code.  
 
While the problems solved are very advanced for high school, in time we’d like to prove 
that algorithmic geometry is no more difficult to teach and learn than traditional 
geometry.  The concepts and methodology are different.   Working intimately with one’s 
personal computer by committing each problem solved to an automated algorithm seems 
to change the mental ergonomics of geometry in a fundamental way.   Ordinary mental 
effort is applied in bite-sized chunks, and the human brain is tasked with short bursts of 
incremental creativity, its key strength.   By layering solutions, the human is able to 
rapidly ascend a learning curve, leading to geometric power and sophistication in under 
100 hours of formal theory and lab exercises. 
 
The algorithmic approach overcomes a key difficulty inherent in traditional analysis.  An 
example can be seen in the intersection points of two circles problem.   A pure analysis 
using 10 scalar variables [ x1  y1  r1 ]  [ x2  y2  r2 ]  [ ix1 iy1 ] [ix2 iy2 ] bogs down 
quickly as the circle constraint entails squaring the difference of variables:  
 
                                      ( ix1 – x1)2 +  (iy1 – y1)2 = r12 
 
There is an explosion of terms.  When a square root must be applied to a sum or 
difference, analysis has little to offer...further simplification grinds to a halt. 
 
Software geometry avoids this headache by virtue of the fact that the variables being 
processed are not unknowns.  Though they are treated abstractly as unknowns by the 
programmer, when the computer takes over and runs the algo, the inputs processed are 
always hard numbers.   Arithmetic operations crunch the numbers, yielding other hard 
numbers. When the software comes up to a square root operation, the operand expression 
has already been crunched down.   Processing consolidates information.  That’s on the 
computer side – on the human side, we still have the freedom to think through a problem 
using abstract unknowns...points, directions, distances, and higher-level objects.   In the 
partnership, human and computer play to their respective strengths, and sidestep their 
limitations.   Appendix B illustrates a classically daunting problem, the intersection of a 
sphere and 3D circle, and how the algorithmic approach reduces it to 4 inductive mental 
steps, and 17 new lines of Java code. 
 
A few words should be said about the difference between geometry and algebra.   While 
there is some overlap superficially to the content presented in a linear algebra class, the 
study of geometry is quite distinct in that the subject matter is about space.   It benefits 
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from a person’s lifelong spatial experience, and the visual imagination processes that 
come with it.   For instance, when confronting the problem of how two planes intersect to 
form a 3D line, there is no need for formal axiomization or proof of this 
phenomenon...we rely on the student’s intuition.  Visual intelligence makes geometry less 
abstract than algebra.   This is one of the arguments why Algorithmic Geometry is likely 
better matched to high school juniors and seniors, compared with AP Linear Algebra4. 
 
Unlike linear algebra, all the quantities we use in algorithmic geometry have spatial 
meanings that one can point to in a sketch.  Let’s compare algebraic and geometric 
representations of a plane: 
 
                      ax + by + cz – d = 0          (algebraic plane equation) 
 

                      p • o == l                        (algorithmic geometry plane predicate)   
 
Syntactically, after expanding the dot product, these two formulas look almost identical.  
However, what does “a” stand for in the top equation?  It doesn’t have any meaning other 
than as the coefficient of x.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Through the medium of sketching, these geometric concepts benefit from the student’s 
native visual intelligence in problem solving.   For example, imagine what will be the 
effect of a 3D coordinate rotation on a plane?   With the right visualization graphics (or 
handheld manipulatives), it is easy to become convinced that rotation has no effect on the 

value of l.   The plane’s distance from the origin is preserved during coordinate rotation.   

It is also obvious that the plane’s orientation o must change for a new choice of axes.   
Since 3D directions like o are conceived as points on the unit sphere, and we know how 

In the geometric formula, all the 
individual quantities have spatial 
meanings: 
 
o is the plane’s orientation, the 
direction pointing perpendicular to 
the plane (its “normal” direction).  
 

l is its ± signed distance from the 

origin, + defined by arrow o. 
 
p is any point in 3D space.  If p is 
in the plane, the comparison for 
equality will evaluate true.  For 
all other points, it will be false. 

x 

z 

y 

o 

l 

p • o == l 
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to rotate any point p for a new set of axes R, then it is a simple matter to transform the 
plane’s orientation o:  we’ll rotate it just as if it were a point: 
 
                          o’ = rotate (R, o)                 R = [ newXaxis  newYaxis  newZaxis ] 
 
Combining these mental steps, the student is now poised to write a simple algorithm that 
automatically transforms any plane object PL  PL’ for desired coordinate rotation R: 
 
public static Plane rotate (Rotator R, Plane PL) { 
    return new Plane (Vec3.rotate(R, PL.o),  PL.l); 
} 
 
Compared to algebra, advanced geometry is much more solidly grounded in real world 
experience and intuition, and might therefore be expected to “click” with a wider group 
of high school students than the more abstract and rule-based linear algebra.   The 
feedback from our initial students, both now in engineering college, is that algorithmic 
geometry gave them a decided leg up understanding the linear algebra and engineering 
vector math they encountered.   We think of math-geometry education, like Papert5 and 
Piaget before him, as a process of hanging formal education onto a person’s native 
geometry intelligence, something that will serve a lifetime in situations requiring spatial 
problem-solving. 
 
The algorithmization of one’s math know-how is a truly epochal, revolutionary change. 
Under this new methodology, you solve problems in bite-sized chunks, doing the 
creative, symbolic work with help from paper and pencil, and committing each 
incremental solution to an automated algorithm.   Assuming the creative solution and its 
edifice in software can handle all possible cases of input (i.e., you design general 
solutions), then algorithms may be reused in any new problem context without ever 
revisiting the details.   You are afforded the luxury of forgetting how you solved the 
problem while applying it to solve harder problems.   This is a remarkably effective way 
to allocate all-too-scarce human attentional resources.  It allows us to solve wicked 
difficult problems with ordinary mental effort, the complexity conveniently “hidden” in 
the mental work previously expended and now compartmentalized in software.   You 
have to experience this mental accelerant firsthand to get an appreciation for it.   Once 
you taste the power, you will find the sheer economy irresistible. 
  
Problems are only focused on intently for a short time. The typical problem takes about 
20-30 minutes total, including problem-definition, solution sketch, pseudo code, Java 
coding, and algorithm testing.   Over a 145-hour course, ~200 algorithms are mastered.   
As each problem is solved, it can be walked away from confident that it has been solved 
for good.   Appendix B illustrates a complete walkthrough of an advanced 3D problem. 
 
The approach taken in algorithmic geometry differs significantly from first-generation 
computer-assisted math, e.g. Geometers Sketchpad6, Cabri, MATLAB and Maple.   In 
first generation tools, the goal was to take math theory content predating the advent of 
computers, and interactively bring it to life.  This pattern of infusing old content into a 
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new medium is exactly as McLuhan7 described in the 1960s.   In 2nd generation  
cybermath, the theory content itself begins to morph under evolutionary pressure wrought 
by 50 years doing math in the new medium (computing).   The theory foundation that 
emerges is post-computational, meaning basic concepts are chosen to suit a human-
computer partnership solving geometry problems – the basic constructs desired are ones 
good for algorithm-writing.   2nd generation cybermath invites a significant rethinking and 
refactoring of math education content, asking the question, how would the basic ideas of 
a branch of mathematics change, had the subject waited to be invented until the age of 
computers? 
 
Such an intellectually imaginative approach is the one needed to get our students moving 
upward in the international sweepstakes that will determine standard-of-living a decade 
or two from now.   The Hart-Rudman Commission Reports8 laid out the argument that 
math-science education is a predictor of a nation’s future economic success.  Their 
visionary document got me started on my quest to modernize 9-12 geometry education.  
 
        Why is it appearing now? 
 
Algorithmic geometry is emerging at this time because a growing cadre of professionals 
cross-trained in math and computer science have discovered the immense power and 
synergy at their fingertips as they codify their math knowledge into an expanding library 
of solutions to problems.   Vector math is a natural fit to computation, as it allows the 
problem thinker to delegate all the scalar arithmetic drudgery.  This frees up human 
attention to be focused on higher-level objects and relationships.   Since previously 
solved problems never have to be revisited, and provide fodder for solving yet harder 
problems, the human side of the partnership can ascend a rapid learning curve. 
 
Direction vectors originated in mathematical physics3, and have gradually worked their 
way into scientific software over the past 30 years.    
 
The shifts in geometric theory are motivated by the need to simplify and restandardize the 
topic for ease in thinking and writing algorithms.   The translation of problem-solving 
thought  sketches  pseudocode  runnable code has been designed for minimal 
friction and maximum compatibility.  The pieces are made to fit together like a Lego set.  
Clearly, traditional geometry had no such requirement in mind.   The first 50 years of 
computer geometry concentrated on translating pre-computational geometry ideas 
literally into the new medium.  Trig library functions like arccos that programmers find 
annoyingly ill-designed for computation are an example of this dutiful allegiance (arccos 
has two possible angle solutions). 
 
The next 50 years will see a new generation of geometry ideas flourish whose 
foundational concepts fully anticipate and integrate the medium of computation, as if 
geometry had waited to be invented in our post-computational world.  The new geometry 
comes to grips with the key representational issues in delegating geometry work to 
computers.   The observation that angle overcompresses directional information at a cost 
of algorithmic complexity exemplifies 21st century math-informatics thinking.  
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High quality software programming tools suitable for introducing math students to 
software geometry, available for free over the internet (Eclipse/Java), are a recent 
phenomenon in the years since the dot-com explosion.   A high school course for math 
students involving programming would not have been practical or affordable en masse 
before the post-2000 generation of software tools came on the scene.  
 
                         Fitting Algorithmic Geometry into the Curriculum 
 
Where does a topic like this fit into the curriculum?   This is a complicated question, but 
a good starting point is recognizing that there is a sub-group of high school students who 
are aggressive math learners.   Having taken accelerated math since middle school, by 
junior or senior year, these students have exhausted all the AP offerings: calculus and 
statistics.   This suggests a niche for a capstone course in advanced geometry. 
 
Unlike calculus and statistics, there is no standard freshman-level geometry course to be 
repackaged as an AP course.  At the collegiate level, geometry content (other than 
remedial) is highly specialized by math-science-engineering discipline.   For instance,  
a Physics major will learn the vector calculus of gradients, divergence and curl as a warm 
up to electro-magnetism.   A math major immerses in matrix math via Linear Algebra, 
using MATLAB.  A computer science student majoring in computer graphics will be 
introduced to 4D homogeneous coordinates implemented in C++.   An engineering 
student specializing in robotics will learn yet another approach based on Jacobian matrix 
inversion.   Computational Geometry is offered in some computer science departments as 
preparation for Geographic Information Systems.   Computational biochemistry is still 
developing its own unique geometry based on tilings.  All of these specialties have, as a 
common thread, vector geometry using software as the medium of expression.    
 
Algorithmic Geometry is an attempt to simplify and standardize a vector geometry 
foundation -- fully integrated with the software medium -- and applicable to a wide swath 
of STEM pursuits.   Developing hands-on competence tackling wicked-difficult problems 
is intended to seduce young people with their power as problem-solvers. 
 
Why should it be introduced in high school?  The rationale is simple – the recruitment of 
students into the STEM pipeline has to match up with the student’s decision timeframe – 
grade 11-12 being the critical time when college and major are being decided.   
Algorithmic Geometry is equal parts STEM marketing and state-of-the-art geometry 
education.   Attentive to social bonding as a parameter, we are adopting a “team 
teaching” approach, where a credentialed 9-12 math teacher will go through the training 
workshop alongside his/her handpicked student TA (bringing Java experience).   The 
objective is a more supportive teaching environment, and for the learners, a peer role 
model already comfortable with algorithmic geometry.    
 
NCTM’s Principles and Standards for School Mathematics: Standards for Grades 9-129  
calls out representation as the deepest level of math understanding, and champions the 
opportunity at every grade level to apply math using the computer, and to connect to real 
world applications.   The question of how best to represent geometric properties and 
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objects, bridging the media of brain, pencil and paper, software programming, computer 
graphics and science applications is the paramount theme of algorithmic geometry.  
 
What level of math understanding will enrolling students need to be successful?   This is 
one of the research questions we still have ahead of us.   It seems reasonable that the 
readiness criteria will be similar to electing AP calc or stat.   Students should be well-
versed in geometry, algebra, trigonometry, functions, and the basics of vectors and 
matrices.   Scientific notation and familiarity with very small numbers will be helpful in 
understanding how a digital computer represents real numbers.  A faculty for spatial 
visualization is fairly indispensable, for instance, the ability to rotate a 3D object 
mentally.    
 
Ability to draw passable-quality sketches is a necessity.   Ability to think through proofs, 
and/or compose complex creative output (music, poetry, writing, art, drama, sewing) are 
other readiness variables we’ll be looking at.   In terms of social orientation, ability to 
work solo deeply-engaged in a problem for up to 30 minutes is a success factor.  For our 
earliest students, we’re looking for some leadership and early-adopter comfort, given the 
additional role these students will be offered as paid TAs.  
 
What about computer science / programming experience?   This is an important research 
question, both in terms of student readiness, and teacher preparedness.   Based on the 
long, storied history of computers in learning, we can almost predict that schools without 
an established computer science curriculum and staff will not be ready to participate as 
pilot sites.   Some local Java talent must be cultivated from which to recruit TAs, not to 
mention managing the laptop-desktop-software infrastructure on a day-to-day basis.  We 
are realistic about piloting in schools where CS is established. 
 
Given that, the course has been designed so that no previous software programming is 
required.   Only a small subset of Java is used, and the naturalness of Java mathematical 
expressions makes the language intuitive.   The labs are constructed so that Java is 
learned piecemeal by example and mimicry.   In the pilot, one of the two students had no 
previous programming, and by the end of week #2, had picked up the essential language 
skills.   This is not a programming course – the focus is on geometry representations and 
problem-solving using sketching.   Software programming is viewed as a medium in 
which applied math workers nowadays store and exercise their accumulated know-how.   
The power of automating one’s brainpower becomes self-reinforcing, starting from the 
first lab.  We would not attempt to teach a pilot course without a TA having Java 
experience working in support of the primary instructor, where both have been through 
the course and received training in managing the course logistics.   A tech support person 
also wants to be on-call nearby to resolve non-courseware glitches. 
 
The Computer Science Teachers Association (CSTA) in conjunction with ACM has 
developed a visionary, comprehensive roadmap, A Model Curriculum for K-12 Computer 
Science10.   The US is lagging behind Israel, Scotland, France, Germany, Finland, South 
Africa and Ontario (Canada), places where computer science (or informatics) has become 
required curriculum11.   Not to be confused with computer literacy, computer science 
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education prepares students to integrate all that computing has to offer in whatever 
pursuit they embark on, with awareness of what is technically possible and the ethical 
issues that permeate such powerful technology.  And, it offers a pre-professional track for 
those wanting to pursue careers in software development and IT.   The goal is a well-
educated citizenry able to effectively govern technological society for the common good, 
and economically, able to maintain its position in the global high-tech arena. 
 
In terms of cognitive skills, the objective is to steep every child in algorithmic problem-
solving.  This means the ability to confront a complex problem in its entirety, 
systematically break it down into its constituent parts (including side effects), and then 
generate rigorous solutions in terms of a set of tangible steps that move from the starting 
point to the solution.   The visionary genius behind this plan is that systems analysis and 
design will be taught as universal skills, the same way reading and writing expanded in 
the 20th century.   Presumably, it will confer the same egalitarian benefit. 
 
The Model Curriculum defines four levels of pedagogy spanning k-12: 
     Level I:     Foundations of Computer Science (k-8) 
     Level II:    Computer Science in the Modern World (grade 9 or 10) 
     Level III:  Computer Science as Analysis and Design (grade 10 or 11) 
     Level IV:  Topics in Computer Science (grade 11 or 12) 
 
Algorithmic Geometry fits neatly into Level IV, where courseware and projects are 
intended to delve further into CS, explore an interdisciplinary topic, and offer project-
based learning opportunities.   Looking to a future time when all US schools offer CS 
education beginning in k-8, Algorithmic Geometry could become a mainstream Math-CS 
capstone elective able to be offered in most high schools. 
 
Speaking of electives, Algorithmic Geometry students will expect to receive college 
credits just as they would for taking an AP course.   A crucial enrollment hurdle 
innovative courses like this face is obtaining accreditation.   University of California has 
a review process that takes a year to complete, and requires a school district as the 
applicant.  Getting accredited in all 50 states seems daunting. 
 
But a journey of a thousand miles begins with one step.   That first step is building a 
small coalition of math-CS educators eager to cultivate next-generation 9-12 geometry 
education on their home turf.   A model worth emulating is the post-Sputnik BSCS 
Biology curriculum modernization12, in which a small group of dedicated, tenacious, 
NSF-funded educators redefined what was worth teaching and learning in their field, over 
the course of a decade of summer workshops.   The impact of those heady days is still 
reverberating decades later in the phenomenal progress spawned in medicine, marine 
science, agriculture, and environmental science. 
 
   Seizing the Competitive Opportunity 
 
We owe it to our young people to prepare them for the future, and equip them with the 
thinking tools needed to thrive in it.   Geometry teaches spatial problem-solving, a key 



31 

 
underpinning of our way of life.   The revolution brought about by ubiquitous access to 
computers for solving spatial problems has given us vivid 3D animation, robots that can 
climb stairways, the ability to pinpoint our location anywhere on the globe, and be 
transported (virtually on-screen) anywhere else.   The lessons learned in the trenches of 
geometric software development are about to yield an unexpected dividend – 
refashioning the core constructs of formal geometry education, optimized for semi-
automated problem-solving.  The spinoff from the software industry back into education:  
cybergeometry. 
 
Though few people understand the significance of this new paradigm yet, what lies ahead 
potentially is a quantum leap in the problem-solving sophistication of students leaving 
high school.   At the heart of this new approach is streamlined theory for working in 3D, 
coupled with a personal computer ready to automate everything downstream from the 
front-end creative process.   The “uphill” cost incurred is learning how to delegate work 
to the machine – expressing your clever problem solutions in the medium of software. 
 
For young people, gaining competence in this medium shapes their world view in the 
direction of mastery over technology, counterbalancing the passive, consumerist 
relationship they are thrust into by “smart” products -- iPods, DVDs, Wii.   A course like 
Algorithmic Geometry peels back the skin, and demystifies the innards of 3D graphics, 
robotic motor coordination, GPS positioning, and machine vision.   Students acquire a 
feel for occupying a position of dominion over their silicon servants.     
    
Knowledge is power - the future belongs to those who can learn it, shape it, wield it, and 
transmit it.   The opportunity to reinvent geometry education for the 21st century is here – 
we just need to seize it. 
 
 (The author may be contacted at pierre@AlgoGeom.org). 
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Appendix A        Algorithmic Geometry Course Syllabus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The syllabus progresses from bottom to top, starting with automation of 2D vector 
functions.  Midway, the focus transitions from 2D to 3D.  Topics in black involve 
automation of established theory concepts.  Topics in blue represent areas where 
theory has been substantially revamped, largely the consequence of sidestepping 
angle, and restandardizing on direction vector as the natural way to represent 
spatial direction.  Students explore 5 Project Challenges in grey. 
 
Mathematicians will recognize 90% of the content as familiar.  New innovations in 
purple merit more explanation than there is room for here: 
 
     •  When deciding how to represent a geometric object, students are coached to 
seek out the object’s point invariance predicate – a formula you can plug arbitrary 
point p into, computing a decision whether or not p is included in the object.  
 
     •  Rotational inference is a new algorithm allowing 3D rotational attitude to be 
inferred from a pair of directional observations, a new mathematical 3D gyro.  

2D 

3D 

Point 

Distance 
Direction 
Vector Dot Product 

Vector Add Vector Diff Normalize 
ScalarMult Length 

Line 

Circle Triangle 

Arc 
LineSeg 

Tilted Rectangle 

Intersection Algos 
Shoulder-elbow robot arm 

Triangulation 

3D Vector 
 Functions 

Cross Product 

Coordinate 
Translation 

Coordinate 
Rotation 

Angle <--> DirVec 

Rotator (newX, newY) 
Rotator (newZ) Line3D 

Direction 
Vector3D 

Sphere 

Circle3D 
Plane 

Point3D 

Intersection Algos 

Rotational 
Inference 

Point 
Invariance 
Predicates 

Interstellar Navigation 

GPS Positioning 

Circumcircle 
Incircle 

Tangents to 
Circle 

Skew Lines 
Directional 
Triangulation Distance 

Trilateration 

Clockface graphics 

Socket wrench caddy robot 

Robot gas pump 

Wireframe graphics 

Computer Vision 

Molecular Brownian Rotation 
2D Challenges: 

3D Challenges: 

New / revamped 
Established concepts 

Polar Angles <--> DirVec3 

Optical refraction 
CAD pipe rendering 
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Appendix B:       Walkthrough of Problem-Solving Methodology (5 steps) 
 
 
 
This problem is tackled about 3/4 of the way through the course. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
orient is the orientation of CIR (orientation of the plane it lies in) 
 
 
 
 
 

 

1 Problem: solve intersection of sphere and circle3D 

 
SPH 

CIR 

i1 

i2 

Given 
 
SPH = [ c   r ] 
CIR = [ c   orient    r ] 

Compute Results 
 
numIntersectionPoints ( 0, 1, 2, ∞ ) 
point locations                    i1  i2 
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The student’s sketch outlines a high-level, graphical specification for an algorithm. 

 

2 Sketch:  mental steps that solve problem 

shift into 
CIR’s local 
coords 

rotate coords 
leveling CIR” 

SPH
’ 

CIR
’ 

SPH
” 

CIR” 

SPH
” 

CIR” 

c/ / 

i1/ / 

i2/ / 

visualize 2nd 
circle where 
x”-y” plane 
cuts thru 
SPH” 

Solve as intersection of 2 circles!!! 
(already have algo in my 2D library) 
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Translating the sketch into pseudocode requires understanding where and how 
       the sketch implies computation of objects.   Note: Steps 1,2,4,5 invoke past      
         work.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3 Write pseudocode: outline of computational steps 
int intersectionOf(SPH, CIR, /*returns*/ i1, i2 ) { 
   // step 1: translate SPH into CIR’s local coords 
   SPH’ = Translate (CIR.c, SPH) 
    
  // step 2: rotate coords adopting CIR.orient as newZaxis 
   Rotator R = RotatorForNewZAt(CIR.orient) 
   SPH” = Rotate (R, SPH’) 
   
 // step 3: specs for 2 circles (use Pythag to get missing radius) 
   cir1 :  c = [ 0  0 ]                            r = CIR.r  
   cir2 :  c = [ SPH”.c.x  SPH”.c.y]     r = sqrt (SPH.r2 - SPH”.c.z2)  
 
// step 4:compute intersection of cir1, cir2 (call from my 2D library) 
   numPts = IntersectionOf(cir1, cir2,  /*returns*/  i1”, i2”)  
 
// step 5: down-transform i1”  i2”  back into original coords 
   i1 = Untranslate(CIR.c, Unrotate(R, i1”))  
   i2 = Untranslate(CIR.c, Unrotate(R, i2”)) 
   return numPts;  

 

4 Put into Java source code using Eclipse editor 
public static int IntersectionOf (Circle3D Cir, Sphere Sph,  
                                       /*returns*/ Vec3 IntPt1, Vec3 IntPt2)  { 
 
//Step1,2. Translate to Cir-local coords; rotate coords so circle lies in X”-Y” plane 
Sphere Sph_p  = Sphere.Translate(Cir.c, Sph); 
Rotator R = Rotator.RotatorForNewZAt(Cir.o); 
Sphere Sph_pp = Sphere.Rotate(R, Sph_p); 
 
//Step3. Find the intersection of Sph_pp with the X”-Y” plane (circle2_pp) 
if (Math.abs(Sph_pp.c.z) > Sph_pp.r) return 0; // sphere too distant from x-y plane 
Circle circle2_pp = new Circle(new Vec2(Sph_pp.c.x,Sph_pp.c.y),0); 
circle2_pp.r = Math.sqrt(Sph.r*Sph.r - Sph_pp.c.z*Sph_pp.c.z); // pythagoras rules! 
 
//Step4. Find the intersection of 2 circles in the X-Y plane (2 pts.) 
Circle circle1_pp = new Circle(new Vec2(0,0), Cir.r); 
Vec2 IntPt1_pp = new Vec2(); Vec2 IntPt2_pp = new Vec2(); 
int numPtsFound = Circle.IntersectionPtsOf (circle1_pp , circle2_pp ,  
                          /*returns*/ IntPt1_pp, IntPt2_pp); 
if ((numPtsFound == 0) || (numPtsFound == 3)) return numPtsFound; 
 
//Step5. Go back to 3D, unrotate and untranslate back into the problem space 
Vec3 I1_pp = new Vec3(IntPt1_pp.x, IntPt1_pp.y, 0); 
Vec3 I2_pp = new Vec3(IntPt2_pp.x, IntPt2_pp.y, 0); 
Vec3 I1  = Vec3.Untranslate(Cir.c, Vec3.Unrotate(R, I1_pp)); 
Vec3 I2  = Vec3.Untranslate(Cir.c, Vec3.Unrotate(R, I2_pp)); 
 
//copy out 
IntPt1.copyFrom(I1);     IntPt2.copyFrom(I2); 
return numPtsFound; 
} 
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              Solution step    Typical time expended (min.) 
 
              1  Problem definition      5 
              2  Sketch out a solution    15     

   3  Pseudocode algo    10     
   4  Java implementation    20     
   5  Graphical algo testing    15 
---------------------------------------------------------------------------- 
   Total problem-solving time   65 min. 

 
 
 
The intersection of sphere + circle3D is now solved for good, and may be called 
upon to solve higher-level challenges.  Examples where this algo is useful: 
 
    •  intersection points of 3 overlapping spheres (GPS positioning) 
 
    •  3D CAD pipe rendering with moving viewer (drawing cylindrical outlines)  
 
 
 
  

5 Test algo in graphics workspace . 
. 


